Xin Wang, Caitlin Ribeiro, Anna Nilsson, Joan B Escobar, Bridget R Alber, John R Bethea, Vsevolod Y Polotsky, Matthew W Kay, Kathryn Schunke, David Mendelowitz
{"title":"副交感脑干心脏迷走神经中催产素受体的表达和激活。","authors":"Xin Wang, Caitlin Ribeiro, Anna Nilsson, Joan B Escobar, Bridget R Alber, John R Bethea, Vsevolod Y Polotsky, Matthew W Kay, Kathryn Schunke, David Mendelowitz","doi":"10.1523/ENEURO.0204-25.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Autonomic imbalance-particularly reduced activity from brainstem parasympathetic cardiac vagal neurons (CVNs)-is a major characteristic of many cardiorespiratory diseases. Therapeutic approaches to selectively enhance CVN activity have been limited by the lack of defined, translationally relevant targets. Previous studies have identified an important excitatory synaptic pathway from oxytocin (OXT) neurons in the paraventricular nucleus of the hypothalamus to brainstem CVNs, suggesting that OXT could provide a key selective excitation of CVNs. In clinical studies, intranasal OXT has been shown to increase parasympathetic cardiac activity, improve autonomic balance, and reduce obstructive event durations and oxygen desaturations in obstructive sleep apnea patients. However, the mechanisms by which activation of hypothalamic OXT neurons, or intranasal OXT, enhance brainstem parasympathetic cardiac activity remain unclear. CVNs are located in two cholinergic brainstem nuclei: nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). In this study, we characterize the colocalization of OXT receptors (OXTRs) in both CVNs and non-CVN cholinergic neurons in the male and female mouse NA and DMNX nuclei. We found that OXT receptors are highly expressed in CVNs in the DMNX, but not in the NA. OXT increases the firing of DMNX CVN, with no effect on NA CVNs. Selective chemogenetic excitation of OXTR+ CVNs in the DMNX-achieved by a combination of Cre- and flp-dependent DREADD expression-evoked a rapid and sustained bradycardia. These findings suggest that activation of DMNX CVNs expressing OXTR with oxytocin may represent a novel translational therapeutic target for restoring autonomic balance in cardiorespiratory disorders.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxytocin Receptor Expression and Activation in Parasympathetic Brainstem Cardiac Vagal Neurons.\",\"authors\":\"Xin Wang, Caitlin Ribeiro, Anna Nilsson, Joan B Escobar, Bridget R Alber, John R Bethea, Vsevolod Y Polotsky, Matthew W Kay, Kathryn Schunke, David Mendelowitz\",\"doi\":\"10.1523/ENEURO.0204-25.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autonomic imbalance-particularly reduced activity from brainstem parasympathetic cardiac vagal neurons (CVNs)-is a major characteristic of many cardiorespiratory diseases. Therapeutic approaches to selectively enhance CVN activity have been limited by the lack of defined, translationally relevant targets. Previous studies have identified an important excitatory synaptic pathway from oxytocin (OXT) neurons in the paraventricular nucleus of the hypothalamus to brainstem CVNs, suggesting that OXT could provide a key selective excitation of CVNs. In clinical studies, intranasal OXT has been shown to increase parasympathetic cardiac activity, improve autonomic balance, and reduce obstructive event durations and oxygen desaturations in obstructive sleep apnea patients. However, the mechanisms by which activation of hypothalamic OXT neurons, or intranasal OXT, enhance brainstem parasympathetic cardiac activity remain unclear. CVNs are located in two cholinergic brainstem nuclei: nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). In this study, we characterize the colocalization of OXT receptors (OXTRs) in both CVNs and non-CVN cholinergic neurons in the male and female mouse NA and DMNX nuclei. We found that OXT receptors are highly expressed in CVNs in the DMNX, but not in the NA. OXT increases the firing of DMNX CVN, with no effect on NA CVNs. Selective chemogenetic excitation of OXTR+ CVNs in the DMNX-achieved by a combination of Cre- and flp-dependent DREADD expression-evoked a rapid and sustained bradycardia. These findings suggest that activation of DMNX CVNs expressing OXTR with oxytocin may represent a novel translational therapeutic target for restoring autonomic balance in cardiorespiratory disorders.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0204-25.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0204-25.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Oxytocin Receptor Expression and Activation in Parasympathetic Brainstem Cardiac Vagal Neurons.
Autonomic imbalance-particularly reduced activity from brainstem parasympathetic cardiac vagal neurons (CVNs)-is a major characteristic of many cardiorespiratory diseases. Therapeutic approaches to selectively enhance CVN activity have been limited by the lack of defined, translationally relevant targets. Previous studies have identified an important excitatory synaptic pathway from oxytocin (OXT) neurons in the paraventricular nucleus of the hypothalamus to brainstem CVNs, suggesting that OXT could provide a key selective excitation of CVNs. In clinical studies, intranasal OXT has been shown to increase parasympathetic cardiac activity, improve autonomic balance, and reduce obstructive event durations and oxygen desaturations in obstructive sleep apnea patients. However, the mechanisms by which activation of hypothalamic OXT neurons, or intranasal OXT, enhance brainstem parasympathetic cardiac activity remain unclear. CVNs are located in two cholinergic brainstem nuclei: nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). In this study, we characterize the colocalization of OXT receptors (OXTRs) in both CVNs and non-CVN cholinergic neurons in the male and female mouse NA and DMNX nuclei. We found that OXT receptors are highly expressed in CVNs in the DMNX, but not in the NA. OXT increases the firing of DMNX CVN, with no effect on NA CVNs. Selective chemogenetic excitation of OXTR+ CVNs in the DMNX-achieved by a combination of Cre- and flp-dependent DREADD expression-evoked a rapid and sustained bradycardia. These findings suggest that activation of DMNX CVNs expressing OXTR with oxytocin may represent a novel translational therapeutic target for restoring autonomic balance in cardiorespiratory disorders.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.