Thomas Stalder, Brice Moulari, Raphaël Cornu, Jérôme Chatelain, Nathan Koenig, Ahmed Hassan, Claire Chretien, Romain Boidot, Corentin Richard, Yann Pellequer, Florian Jurin, Henri Pierre, Hélène Martin, Arnaud Béduneau
{"title":"在结肠炎实验模型中靶向口服微胶囊化TNF-α siRNA。","authors":"Thomas Stalder, Brice Moulari, Raphaël Cornu, Jérôme Chatelain, Nathan Koenig, Ahmed Hassan, Claire Chretien, Romain Boidot, Corentin Richard, Yann Pellequer, Florian Jurin, Henri Pierre, Hélène Martin, Arnaud Béduneau","doi":"10.1007/s13346-025-01936-3","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) affect millions of people worldwide. The use of anti-TNF-α for the treatment of moderate-to-severe IBD faces primary non-response, loss of response during treatment or intolerance issues. As an alternative, a strategy consisting of oral administration of TNF-α siRNA was evaluated in the present study for the local treatment of IBD. TNF-α siRNA entrapped in lipid nanoparticles (LNPs) was microencapsulated in gastroresistant alginate particles using an original process. The encapsulation yield of both siRNA and LNPs in microparticles (MPs) was at least 90%. Oral administration of MPs significantly reduced both clinical score and therapeutic index in a TNBS-induced colitis model in mice. Near complete removal of tissue damage, including edema, ulceration and necrosis, was observed in colon sections from treated mice. Reduced variation in gene sets involved in the global inflammatory response and the TNF-α/NF-κB signaling pathway was detected in the colon compared to untreated mice, demonstrating the anti-inflammatory activity of MPs. Finally, biodistribution studies showed the targeting of the inflamed colon by MPs and the colocalization of LNPs and MPs at the site of action. These MPs may represent a promising siRNA delivery platform for the oral treatment of IBD.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted oral delivery of microencapsulated TNF-α siRNA in an experimental model of colitis.\",\"authors\":\"Thomas Stalder, Brice Moulari, Raphaël Cornu, Jérôme Chatelain, Nathan Koenig, Ahmed Hassan, Claire Chretien, Romain Boidot, Corentin Richard, Yann Pellequer, Florian Jurin, Henri Pierre, Hélène Martin, Arnaud Béduneau\",\"doi\":\"10.1007/s13346-025-01936-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel diseases (IBD) affect millions of people worldwide. The use of anti-TNF-α for the treatment of moderate-to-severe IBD faces primary non-response, loss of response during treatment or intolerance issues. As an alternative, a strategy consisting of oral administration of TNF-α siRNA was evaluated in the present study for the local treatment of IBD. TNF-α siRNA entrapped in lipid nanoparticles (LNPs) was microencapsulated in gastroresistant alginate particles using an original process. The encapsulation yield of both siRNA and LNPs in microparticles (MPs) was at least 90%. Oral administration of MPs significantly reduced both clinical score and therapeutic index in a TNBS-induced colitis model in mice. Near complete removal of tissue damage, including edema, ulceration and necrosis, was observed in colon sections from treated mice. Reduced variation in gene sets involved in the global inflammatory response and the TNF-α/NF-κB signaling pathway was detected in the colon compared to untreated mice, demonstrating the anti-inflammatory activity of MPs. Finally, biodistribution studies showed the targeting of the inflamed colon by MPs and the colocalization of LNPs and MPs at the site of action. These MPs may represent a promising siRNA delivery platform for the oral treatment of IBD.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01936-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01936-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Targeted oral delivery of microencapsulated TNF-α siRNA in an experimental model of colitis.
Inflammatory bowel diseases (IBD) affect millions of people worldwide. The use of anti-TNF-α for the treatment of moderate-to-severe IBD faces primary non-response, loss of response during treatment or intolerance issues. As an alternative, a strategy consisting of oral administration of TNF-α siRNA was evaluated in the present study for the local treatment of IBD. TNF-α siRNA entrapped in lipid nanoparticles (LNPs) was microencapsulated in gastroresistant alginate particles using an original process. The encapsulation yield of both siRNA and LNPs in microparticles (MPs) was at least 90%. Oral administration of MPs significantly reduced both clinical score and therapeutic index in a TNBS-induced colitis model in mice. Near complete removal of tissue damage, including edema, ulceration and necrosis, was observed in colon sections from treated mice. Reduced variation in gene sets involved in the global inflammatory response and the TNF-α/NF-κB signaling pathway was detected in the colon compared to untreated mice, demonstrating the anti-inflammatory activity of MPs. Finally, biodistribution studies showed the targeting of the inflamed colon by MPs and the colocalization of LNPs and MPs at the site of action. These MPs may represent a promising siRNA delivery platform for the oral treatment of IBD.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.