受动物磁感受启发的磁遗传学:ΔTRPV4MagR作为一种新型磁致动器,可以远程调节大脑回路。

IF 8.4 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Stimulation Pub Date : 2025-09-01 Epub Date: 2025-08-05 DOI:10.1016/j.brs.2025.07.019
Meng-Nan Liu, Xiao-Yu Tian, Wen-Can Fang, Rui Song, Fei Li, Zhi-Yuan Wang, Guan-Yi Lu, Ning Wu, Jin Li, Hong Li
{"title":"受动物磁感受启发的磁遗传学:ΔTRPV4MagR作为一种新型磁致动器,可以远程调节大脑回路。","authors":"Meng-Nan Liu, Xiao-Yu Tian, Wen-Can Fang, Rui Song, Fei Li, Zhi-Yuan Wang, Guan-Yi Lu, Ning Wu, Jin Li, Hong Li","doi":"10.1016/j.brs.2025.07.019","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The discovery of a novel magnetic actuator is critical for the application of magnetogenetic technique. However, whether MagR can perceive magnetic fields is ambiguous in previous studies that evoked great interest and debate.</p><p><strong>Material and method: </strong>Here, the fusion protein ΔTRPV4<sup>MagR</sup> is constructed by genetically linking MagR to the C-terminus of truncated TRPV4, and the magnetic perception capacity of MagR is read out by TRPV4 cation channel characteristics in vitro and in vivo.</p><p><strong>Results and conclusion: </strong>Upon magnetic stimulation, ΔTRPV4<sup>MagR</sup> expressing HEK293T cells exhibited calcium influx in a strength-dependent manner examined by the Fluo-4 experiment. While under 40 mT, 0.1 Hz magnetic stimulation, ΔTRPV4<sup>MagR</sup> induced calcium influx was more potent than Magneto 2.0 (ΔTRPV4<sup>Ferritin</sup>). Interestingly, the MagR of pigeon (cMagR) or human origin has superior magnetic sensitivity to that of drosophila origin (dMagR). Moreover, for the freely moving mice, ΔTRPV4<sup>cMagR</sup> expression successfully raises the intracellular calcium level of brain neurons and operates dopamine release from VTA dopaminergic neurons under magnetic stimulation. Remarkably, the effectiveness of ΔTRPV4<sup>cMagR</sup> is further validated by magnetic control of mice rotating around the body-axis and freezing-of-gait. This work not only witnesses the magnetoperceptive capacity of MagR, but also provides a promising effective means to manipulate specific neuron populations in brain circuits temporally and remotely.</p>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":" ","pages":"1455-1469"},"PeriodicalIF":8.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetogenetics inspired by animal Magnetoreception: ΔTRPV4<sup>MagR</sup> as a novel magnetogenetic actuator enabling remote neuromodulation of brain circuits.\",\"authors\":\"Meng-Nan Liu, Xiao-Yu Tian, Wen-Can Fang, Rui Song, Fei Li, Zhi-Yuan Wang, Guan-Yi Lu, Ning Wu, Jin Li, Hong Li\",\"doi\":\"10.1016/j.brs.2025.07.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The discovery of a novel magnetic actuator is critical for the application of magnetogenetic technique. However, whether MagR can perceive magnetic fields is ambiguous in previous studies that evoked great interest and debate.</p><p><strong>Material and method: </strong>Here, the fusion protein ΔTRPV4<sup>MagR</sup> is constructed by genetically linking MagR to the C-terminus of truncated TRPV4, and the magnetic perception capacity of MagR is read out by TRPV4 cation channel characteristics in vitro and in vivo.</p><p><strong>Results and conclusion: </strong>Upon magnetic stimulation, ΔTRPV4<sup>MagR</sup> expressing HEK293T cells exhibited calcium influx in a strength-dependent manner examined by the Fluo-4 experiment. While under 40 mT, 0.1 Hz magnetic stimulation, ΔTRPV4<sup>MagR</sup> induced calcium influx was more potent than Magneto 2.0 (ΔTRPV4<sup>Ferritin</sup>). Interestingly, the MagR of pigeon (cMagR) or human origin has superior magnetic sensitivity to that of drosophila origin (dMagR). Moreover, for the freely moving mice, ΔTRPV4<sup>cMagR</sup> expression successfully raises the intracellular calcium level of brain neurons and operates dopamine release from VTA dopaminergic neurons under magnetic stimulation. Remarkably, the effectiveness of ΔTRPV4<sup>cMagR</sup> is further validated by magnetic control of mice rotating around the body-axis and freezing-of-gait. This work not only witnesses the magnetoperceptive capacity of MagR, but also provides a promising effective means to manipulate specific neuron populations in brain circuits temporally and remotely.</p>\",\"PeriodicalId\":9206,\"journal\":{\"name\":\"Brain Stimulation\",\"volume\":\" \",\"pages\":\"1455-1469\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Stimulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.brs.2025.07.019\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brs.2025.07.019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要新型磁致动器的发现对磁成技术的应用具有重要意义。然而,在先前的研究中,MagR是否可以感知磁场是模糊的,引起了极大的兴趣和争论。材料与方法:本文通过将MagR与截断的TRPV4的c端基因连接构建融合蛋白ΔTRPV4MagR,并通过TRPV4阳离子通道特性在体外和体内读取MagR的磁感知能力。结果和结论:经Fluo-4实验检测,在磁刺激下,ΔTRPV4MagR表达HEK293T细胞以强度依赖的方式表现出钙内流。而在40 mT, 0.1 Hz的磁刺激下,ΔTRPV4MagR诱导的钙内流比Magneto 2.0更有效(ΔTRPV4Ferritin)。有趣的是,鸽子(cMagR)或人类(dMagR)的磁敏性优于果蝇(dMagR)。此外,对于自由运动小鼠,ΔTRPV4cMagR的表达成功地提高了脑神经元细胞内钙水平,并在磁刺激下操纵VTA多巴胺能神经元释放多巴胺。值得注意的是,ΔTRPV4cMagR的有效性通过磁场控制小鼠绕身体轴旋转和冻结步态进一步得到验证。这项工作不仅见证了磁磁共振的磁感知能力,而且为暂时和远程操纵大脑回路中的特定神经元群提供了一种有希望的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetogenetics inspired by animal Magnetoreception: ΔTRPV4MagR as a novel magnetogenetic actuator enabling remote neuromodulation of brain circuits.

Introduction: The discovery of a novel magnetic actuator is critical for the application of magnetogenetic technique. However, whether MagR can perceive magnetic fields is ambiguous in previous studies that evoked great interest and debate.

Material and method: Here, the fusion protein ΔTRPV4MagR is constructed by genetically linking MagR to the C-terminus of truncated TRPV4, and the magnetic perception capacity of MagR is read out by TRPV4 cation channel characteristics in vitro and in vivo.

Results and conclusion: Upon magnetic stimulation, ΔTRPV4MagR expressing HEK293T cells exhibited calcium influx in a strength-dependent manner examined by the Fluo-4 experiment. While under 40 mT, 0.1 Hz magnetic stimulation, ΔTRPV4MagR induced calcium influx was more potent than Magneto 2.0 (ΔTRPV4Ferritin). Interestingly, the MagR of pigeon (cMagR) or human origin has superior magnetic sensitivity to that of drosophila origin (dMagR). Moreover, for the freely moving mice, ΔTRPV4cMagR expression successfully raises the intracellular calcium level of brain neurons and operates dopamine release from VTA dopaminergic neurons under magnetic stimulation. Remarkably, the effectiveness of ΔTRPV4cMagR is further validated by magnetic control of mice rotating around the body-axis and freezing-of-gait. This work not only witnesses the magnetoperceptive capacity of MagR, but also provides a promising effective means to manipulate specific neuron populations in brain circuits temporally and remotely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Stimulation
Brain Stimulation 医学-临床神经学
CiteScore
13.10
自引率
9.10%
发文量
256
审稿时长
72 days
期刊介绍: Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation. Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信