Najm Ul Hassan, William Kojo Smith, Hafiza Ayesha Nawaz, Han Wang
{"title":"昼夜节律和衰老之间的复杂联系:重置生物钟是长寿的关键吗?","authors":"Najm Ul Hassan, William Kojo Smith, Hafiza Ayesha Nawaz, Han Wang","doi":"10.1007/s10522-025-10299-8","DOIUrl":null,"url":null,"abstract":"<p><p>The desire to increase life expectancy, coupled with the decline in biological functions that occurs as we age, represents one of the most significant challenges facing our society. Age-related declines in biological functions contribute to frailty and morbidity, demanding innovative strategies to promote healthy aging. The circadian clock, which controls daily physiological processes, is intricately linked to aging and overall health. Circadian disruptions can lead to metabolic dysfunction, impaired immune responses, increased DNA damage, and elevated disease susceptibility. On the other hand, maintaining robust circadian rhythms through interventions such as regular sleep-wake patterns, time-restricted feeding, and physical activity may extend health span and longevity. The circadian clock affects various molecular pathways associated with aging, including the insulin/IGF, mTOR, and sirtuin signaling pathways. Enhancing circadian rhythms presents a promising avenue for mitigating age-related disorders and promoting healthy aging. This review highlights the potential of circadian clock-based interventions as a transformative strategy to improve the quality of life and extend the healthspan of aging individuals.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 4","pages":"156"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The intricate link between circadian rhythms and aging: can resetting our circadian clock hold the key to longevity?\",\"authors\":\"Najm Ul Hassan, William Kojo Smith, Hafiza Ayesha Nawaz, Han Wang\",\"doi\":\"10.1007/s10522-025-10299-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The desire to increase life expectancy, coupled with the decline in biological functions that occurs as we age, represents one of the most significant challenges facing our society. Age-related declines in biological functions contribute to frailty and morbidity, demanding innovative strategies to promote healthy aging. The circadian clock, which controls daily physiological processes, is intricately linked to aging and overall health. Circadian disruptions can lead to metabolic dysfunction, impaired immune responses, increased DNA damage, and elevated disease susceptibility. On the other hand, maintaining robust circadian rhythms through interventions such as regular sleep-wake patterns, time-restricted feeding, and physical activity may extend health span and longevity. The circadian clock affects various molecular pathways associated with aging, including the insulin/IGF, mTOR, and sirtuin signaling pathways. Enhancing circadian rhythms presents a promising avenue for mitigating age-related disorders and promoting healthy aging. This review highlights the potential of circadian clock-based interventions as a transformative strategy to improve the quality of life and extend the healthspan of aging individuals.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":\"26 4\",\"pages\":\"156\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-025-10299-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10299-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
The intricate link between circadian rhythms and aging: can resetting our circadian clock hold the key to longevity?
The desire to increase life expectancy, coupled with the decline in biological functions that occurs as we age, represents one of the most significant challenges facing our society. Age-related declines in biological functions contribute to frailty and morbidity, demanding innovative strategies to promote healthy aging. The circadian clock, which controls daily physiological processes, is intricately linked to aging and overall health. Circadian disruptions can lead to metabolic dysfunction, impaired immune responses, increased DNA damage, and elevated disease susceptibility. On the other hand, maintaining robust circadian rhythms through interventions such as regular sleep-wake patterns, time-restricted feeding, and physical activity may extend health span and longevity. The circadian clock affects various molecular pathways associated with aging, including the insulin/IGF, mTOR, and sirtuin signaling pathways. Enhancing circadian rhythms presents a promising avenue for mitigating age-related disorders and promoting healthy aging. This review highlights the potential of circadian clock-based interventions as a transformative strategy to improve the quality of life and extend the healthspan of aging individuals.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.