Enkhzul Amarsanaa, Jung-Min Oh, Seon Young Lee, Saikat Maiti, Sung You Hong, Kyungjae Myung
{"title":"靶向mmr缺陷结直肠癌的有效小分子UNI110。","authors":"Enkhzul Amarsanaa, Jung-Min Oh, Seon Young Lee, Saikat Maiti, Sung You Hong, Kyungjae Myung","doi":"10.1080/19768354.2025.2542172","DOIUrl":null,"url":null,"abstract":"<p><p>Mismatch repair (MMR) deficiency is a hallmark of microsatellite instability (MSI) in hereditary non-polyposis colorectal cancer, Lynch syndrome, contributing to resistance against conventional chemotherapy and posing a significant therapeutic challenge. In this study, we introduce UNI110, a novel small molecule derived from Baicalein, engineered for enhanced selectivity against MMR-deficient cancer cells. UNI110 exhibits a remarkable sevenfold increase in potency over Baicalein, demonstrating significantly lower IC50 values and heightened cytotoxic effects in MMR-deficient cell lines. Mechanistically, UNI110 selectively induces DNA damage in MMR-deficient cancer cells, ultimately resulting in cell death. Furthermore, UNI110 disrupts homologous recombination (HR) repair by inhibiting the MSH2-MSH3 complex, specifically blocking the interaction between MSH2 and EXO1, thereby impairing long-range end resection during double-strand break (DSB) repair. These findings establish UNI110 as a promising lead compound for the targeted treatment of MMR-deficient colorectal cancers, offering a potential breakthrough in overcoming chemotherapy resistance and improving patient outcomes.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"502-511"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326383/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting MMR-deficient colorectal cancer with a potent small molecule UNI110.\",\"authors\":\"Enkhzul Amarsanaa, Jung-Min Oh, Seon Young Lee, Saikat Maiti, Sung You Hong, Kyungjae Myung\",\"doi\":\"10.1080/19768354.2025.2542172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mismatch repair (MMR) deficiency is a hallmark of microsatellite instability (MSI) in hereditary non-polyposis colorectal cancer, Lynch syndrome, contributing to resistance against conventional chemotherapy and posing a significant therapeutic challenge. In this study, we introduce UNI110, a novel small molecule derived from Baicalein, engineered for enhanced selectivity against MMR-deficient cancer cells. UNI110 exhibits a remarkable sevenfold increase in potency over Baicalein, demonstrating significantly lower IC50 values and heightened cytotoxic effects in MMR-deficient cell lines. Mechanistically, UNI110 selectively induces DNA damage in MMR-deficient cancer cells, ultimately resulting in cell death. Furthermore, UNI110 disrupts homologous recombination (HR) repair by inhibiting the MSH2-MSH3 complex, specifically blocking the interaction between MSH2 and EXO1, thereby impairing long-range end resection during double-strand break (DSB) repair. These findings establish UNI110 as a promising lead compound for the targeted treatment of MMR-deficient colorectal cancers, offering a potential breakthrough in overcoming chemotherapy resistance and improving patient outcomes.</p>\",\"PeriodicalId\":7804,\"journal\":{\"name\":\"Animal Cells and Systems\",\"volume\":\"29 1\",\"pages\":\"502-511\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326383/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cells and Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19768354.2025.2542172\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2542172","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Targeting MMR-deficient colorectal cancer with a potent small molecule UNI110.
Mismatch repair (MMR) deficiency is a hallmark of microsatellite instability (MSI) in hereditary non-polyposis colorectal cancer, Lynch syndrome, contributing to resistance against conventional chemotherapy and posing a significant therapeutic challenge. In this study, we introduce UNI110, a novel small molecule derived from Baicalein, engineered for enhanced selectivity against MMR-deficient cancer cells. UNI110 exhibits a remarkable sevenfold increase in potency over Baicalein, demonstrating significantly lower IC50 values and heightened cytotoxic effects in MMR-deficient cell lines. Mechanistically, UNI110 selectively induces DNA damage in MMR-deficient cancer cells, ultimately resulting in cell death. Furthermore, UNI110 disrupts homologous recombination (HR) repair by inhibiting the MSH2-MSH3 complex, specifically blocking the interaction between MSH2 and EXO1, thereby impairing long-range end resection during double-strand break (DSB) repair. These findings establish UNI110 as a promising lead compound for the targeted treatment of MMR-deficient colorectal cancers, offering a potential breakthrough in overcoming chemotherapy resistance and improving patient outcomes.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.