Mohamed Ali, Mohamed H Sherif, Nashwa Barakat, Bassant Yahia, Ahmed A Shokeir, Basel Sitohy
{"title":"脂肪间充质干细胞衍生外泌体联合罗氟米司特通过调节纤维化和炎症改善慢性肾脏疾病。","authors":"Mohamed Ali, Mohamed H Sherif, Nashwa Barakat, Bassant Yahia, Ahmed A Shokeir, Basel Sitohy","doi":"10.1002/adbi.202500152","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose mesenchymal stem cell-derived exosomes and the PDE4 inhibitor roflumilast (ROF) are investigated as potential treatments for chronic kidney disease (CKD). The exosomes are extracted and analyzed using electron microscopy and flow cytometry, then employed with ROF for in vivo implantation in a CKD animal model. Animals aredivided into seven groups. Group (I) Control; (II) exosomes; (III) ROF; (IV) Adriamycin (ADR); (V) ADR + exosomes, (VI) ADR + ROF, and (VII) ADR + Exosomes+ ROF. Biochemical serum indicators (creatinine, BUN), antioxidant status (GSH, MDA), and the mRNA expressions of TGF-β1, Smad3, IL-6, BAX, Wnt-7, FN, and miRNA145-5p are determined using qRT-PCR. Histology assessment using H&E staining, ultrastructural observation using TEM, and protein expression in kidney tissue (FN1 and BAX) are assessed. The isolated exosomes showed cup-shaped morphologyand expressed CD81, CD9, and CD63. Exosomes and ROF increased glutathione (GSH) levels while decreasing malondialdehyde (MDA) levels. Further, ROF and exosomes treatment lowered the expression of the apoptotic indicators BAX, the fibrotic markers TGFβ1, Smad3, Wnt7a, and FN1, and the inflammatory marker IL6, and increased the expression of miRNA-145. Moreover, ROF and exosomes improved histological and ultrastructural examination. In conclusion, exosomes and ROF can protect against CKD by reducing apoptosis and fibrosis.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e00152"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adipose Mesenchymal Stem Cell-Derived Exosomes in Conjunction with Roflumilast Ameliorate Chronic Kidney Disease Through the Modulation of Fibrosis and Inflammation.\",\"authors\":\"Mohamed Ali, Mohamed H Sherif, Nashwa Barakat, Bassant Yahia, Ahmed A Shokeir, Basel Sitohy\",\"doi\":\"10.1002/adbi.202500152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose mesenchymal stem cell-derived exosomes and the PDE4 inhibitor roflumilast (ROF) are investigated as potential treatments for chronic kidney disease (CKD). The exosomes are extracted and analyzed using electron microscopy and flow cytometry, then employed with ROF for in vivo implantation in a CKD animal model. Animals aredivided into seven groups. Group (I) Control; (II) exosomes; (III) ROF; (IV) Adriamycin (ADR); (V) ADR + exosomes, (VI) ADR + ROF, and (VII) ADR + Exosomes+ ROF. Biochemical serum indicators (creatinine, BUN), antioxidant status (GSH, MDA), and the mRNA expressions of TGF-β1, Smad3, IL-6, BAX, Wnt-7, FN, and miRNA145-5p are determined using qRT-PCR. Histology assessment using H&E staining, ultrastructural observation using TEM, and protein expression in kidney tissue (FN1 and BAX) are assessed. The isolated exosomes showed cup-shaped morphologyand expressed CD81, CD9, and CD63. Exosomes and ROF increased glutathione (GSH) levels while decreasing malondialdehyde (MDA) levels. Further, ROF and exosomes treatment lowered the expression of the apoptotic indicators BAX, the fibrotic markers TGFβ1, Smad3, Wnt7a, and FN1, and the inflammatory marker IL6, and increased the expression of miRNA-145. Moreover, ROF and exosomes improved histological and ultrastructural examination. In conclusion, exosomes and ROF can protect against CKD by reducing apoptosis and fibrosis.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\" \",\"pages\":\"e00152\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/adbi.202500152\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202500152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Adipose Mesenchymal Stem Cell-Derived Exosomes in Conjunction with Roflumilast Ameliorate Chronic Kidney Disease Through the Modulation of Fibrosis and Inflammation.
Adipose mesenchymal stem cell-derived exosomes and the PDE4 inhibitor roflumilast (ROF) are investigated as potential treatments for chronic kidney disease (CKD). The exosomes are extracted and analyzed using electron microscopy and flow cytometry, then employed with ROF for in vivo implantation in a CKD animal model. Animals aredivided into seven groups. Group (I) Control; (II) exosomes; (III) ROF; (IV) Adriamycin (ADR); (V) ADR + exosomes, (VI) ADR + ROF, and (VII) ADR + Exosomes+ ROF. Biochemical serum indicators (creatinine, BUN), antioxidant status (GSH, MDA), and the mRNA expressions of TGF-β1, Smad3, IL-6, BAX, Wnt-7, FN, and miRNA145-5p are determined using qRT-PCR. Histology assessment using H&E staining, ultrastructural observation using TEM, and protein expression in kidney tissue (FN1 and BAX) are assessed. The isolated exosomes showed cup-shaped morphologyand expressed CD81, CD9, and CD63. Exosomes and ROF increased glutathione (GSH) levels while decreasing malondialdehyde (MDA) levels. Further, ROF and exosomes treatment lowered the expression of the apoptotic indicators BAX, the fibrotic markers TGFβ1, Smad3, Wnt7a, and FN1, and the inflammatory marker IL6, and increased the expression of miRNA-145. Moreover, ROF and exosomes improved histological and ultrastructural examination. In conclusion, exosomes and ROF can protect against CKD by reducing apoptosis and fibrosis.