用于(Li/Na/K)-(Rb/Cs)电池的Ge5Si5O20二维层状材料的锚固研究

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fatemeh Mollaamin
{"title":"用于(Li/Na/K)-(Rb/Cs)电池的Ge5Si5O20二维层状材料的锚固研究","authors":"Fatemeh Mollaamin","doi":"10.1186/s13065-025-01593-0","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this investigation, alkali metals including lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) have been served as hybrid materials for batteries cells. A vast study on H-capture by “LiRb (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)” was probed using computational approaches due to density state analysis of charge density differences, total density of states, projected density of states, overlap projected density of states, and localized orbital locator for hydrogenated hybrid clusters of “LiRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>”. As the benefits of “lithium, sodium or potassium” over “Ge/Si” possess its higher electron and “hole motion”, permitting “Li, Na, K” devices to operate at higher frequencies than “Ge/Si” devices. Regarding optimized energy, KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), and KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub> heteroclusters have shown more stability than LiRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) − 2H<sub>2</sub>, NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub> heteroclusters. In this research, hydrogen energy sources on functionalized 2D materials by metals have been shown as promising alternatives for clean energy systems. In a particular way, we have demonstrated here that (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) weakly adsorbs H<sub>2</sub>. At the same time, the Li/Na/K decoration significantly enhances the H<sub>2</sub> interaction, accommodating to H<sub>2</sub> molecules by a stronger physisorption. Doping Rb or Sc on Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub> can increase battery capacity through LiRb (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) nanoclusters for hydrogen adsorption process and could improve the rate performances by enhancing electrical conductivity. A small portion of “Rb or Cs” entered the “Ge–Si” layer to replace the Li, Na or K sites might improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. Among these, LiRb (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) and KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) pretend to show the most hope in terms of “Rb” doping which can augment the capacity owing to higher surface capacitive impacts.To be specific, a scalable method is developed to fabricate the nanocomposite which acts as a simulated anode for Li-ion intercalation and subsequent Li alkali metal (Na, K/Rb, Cs) alloys owing to enhanced lithiophilicity and sufficient ion-conducting pathways.</p>\n </div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329880/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anchoring of 2D layered materials of Ge5Si5O20 for (Li/Na/K)-(Rb/Cs) batteries towards Eco-friendly energy storage\",\"authors\":\"Fatemeh Mollaamin\",\"doi\":\"10.1186/s13065-025-01593-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this investigation, alkali metals including lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) have been served as hybrid materials for batteries cells. A vast study on H-capture by “LiRb (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)” was probed using computational approaches due to density state analysis of charge density differences, total density of states, projected density of states, overlap projected density of states, and localized orbital locator for hydrogenated hybrid clusters of “LiRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>”. As the benefits of “lithium, sodium or potassium” over “Ge/Si” possess its higher electron and “hole motion”, permitting “Li, Na, K” devices to operate at higher frequencies than “Ge/Si” devices. Regarding optimized energy, KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), and KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub> heteroclusters have shown more stability than LiRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub>, NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) − 2H<sub>2</sub>, NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>)–2H<sub>2</sub> heteroclusters. In this research, hydrogen energy sources on functionalized 2D materials by metals have been shown as promising alternatives for clean energy systems. In a particular way, we have demonstrated here that (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) weakly adsorbs H<sub>2</sub>. At the same time, the Li/Na/K decoration significantly enhances the H<sub>2</sub> interaction, accommodating to H<sub>2</sub> molecules by a stronger physisorption. Doping Rb or Sc on Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub> can increase battery capacity through LiRb (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), LiCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), KCs(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) nanoclusters for hydrogen adsorption process and could improve the rate performances by enhancing electrical conductivity. A small portion of “Rb or Cs” entered the “Ge–Si” layer to replace the Li, Na or K sites might improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. Among these, LiRb (Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>), NaRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) and KRb(Ge<sub>5</sub>Si<sub>5</sub>O<sub>20</sub>) pretend to show the most hope in terms of “Rb” doping which can augment the capacity owing to higher surface capacitive impacts.To be specific, a scalable method is developed to fabricate the nanocomposite which acts as a simulated anode for Li-ion intercalation and subsequent Li alkali metal (Na, K/Rb, Cs) alloys owing to enhanced lithiophilicity and sufficient ion-conducting pathways.</p>\\n </div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329880/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01593-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01593-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)和铯(Cs)在内的碱金属被用作电池的混合材料。通过对“LiRb(Ge5Si5O20) -2H2、LiCs(Ge5Si5O20) -2H2、LiCs(Ge5Si5O20) -2H2、NaRb(Ge5Si5O20) -2H2、NaRb(Ge5Si5O20) -2H2、nab (Ge5Si5O20) -2H2、nab (Ge5Si5O20) -2H2、KRb(Ge5Si5O20) -2H2、KCs(Ge5Si5O20) -2H2”氢化杂化团簇的电荷密度差、总态密度、投影态密度、重叠投影态密度和局域轨道定位器”的计算方法,对“LiRb(Ge5Si5O20) -2H2”、“LiRb(Ge5Si5O20) -2H2”、“LiRb(Ge5Si5O20) -2H2”进行了大量的氢捕获研究。h2; (Ge5Si5O20) 2”。由于“锂,钠或钾”优于“Ge/Si”,因此“Li, Na, K”器件具有更高的电子和“空穴运动”,从而允许“Li, Na, K”器件在比“Ge/Si”器件更高的频率下工作。在优化能量方面,KRb(Ge5Si5O20)、KRb(Ge5Si5O20) -2H2、KCs(Ge5Si5O20)和KCs(Ge5Si5O20) -2H2异质团簇的稳定性优于LiRb(Ge5Si5O20)、LiRb(Ge5Si5O20) -2H2、LiCs(Ge5Si5O20)、LiCs(Ge5Si5O20) -2H2、NaRb(Ge5Si5O20)、NaRb(Ge5Si5O20) -2H2、NaCs(Ge5Si5O20)、NaCs(Ge5Si5O20) -2H2异质团簇。在这项研究中,金属功能化二维材料上的氢能源已被证明是清洁能源系统的有前途的替代品。以一种特殊的方式,我们已经在这里证明了(Ge5Si5O20)弱吸附H2。同时,Li/Na/K修饰显著增强了H2相互作用,通过更强的物理吸附来容纳H2分子。在Ge5Si5O20上掺杂Rb或Sc可以通过LiRb (Ge5Si5O20)、LiCs(Ge5Si5O20)、NaRb(Ge5Si5O20)、NaCs(Ge5Si5O20)、KRb(Ge5Si5O20)、KCs(Ge5Si5O20)纳米团簇吸附氢来提高电池容量,并通过提高导电性来提高电池的速率性能。少量“Rb或Cs”进入“Ge-Si”层取代Li、Na或K位,可以提高电极材料在高复数下的结构稳定性,从而提高容量保持率。其中,LiRb (Ge5Si5O20), NaRb(Ge5Si5O20)和KRb(Ge5Si5O20)在“Rb”掺杂方面表现出最大的希望,因为Rb的表面电容影响较大,可以增加容量。具体来说,我们开发了一种可扩展的方法来制造纳米复合材料,由于增强的亲锂性和充足的离子传导途径,纳米复合材料可以作为锂离子插入和随后的Li碱金属(Na, K/Rb, Cs)合金的模拟阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anchoring of 2D layered materials of Ge5Si5O20 for (Li/Na/K)-(Rb/Cs) batteries towards Eco-friendly energy storage

In this investigation, alkali metals including lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) have been served as hybrid materials for batteries cells. A vast study on H-capture by “LiRb (Ge5Si5O20), LiCs(Ge5Si5O20), NaRb(Ge5Si5O20), NaCs(Ge5Si5O20), KRb(Ge5Si5O20), KCs(Ge5Si5O20)” was probed using computational approaches due to density state analysis of charge density differences, total density of states, projected density of states, overlap projected density of states, and localized orbital locator for hydrogenated hybrid clusters of “LiRb(Ge5Si5O20)–2H2, LiCs(Ge5Si5O20)–2H2, NaRb(Ge5Si5O20)–2H2, NaCs(Ge5Si5O20)–2H2, KRb(Ge5Si5O20)–2H2, KCs(Ge5Si5O20)–2H2”. As the benefits of “lithium, sodium or potassium” over “Ge/Si” possess its higher electron and “hole motion”, permitting “Li, Na, K” devices to operate at higher frequencies than “Ge/Si” devices. Regarding optimized energy, KRb(Ge5Si5O20), KRb(Ge5Si5O20)–2H2, KCs(Ge5Si5O20), and KCs(Ge5Si5O20)–2H2 heteroclusters have shown more stability than LiRb(Ge5Si5O20), LiRb(Ge5Si5O20)–2H2, LiCs(Ge5Si5O20), LiCs(Ge5Si5O20)–2H2, NaRb(Ge5Si5O20), NaRb(Ge5Si5O20) − 2H2, NaCs(Ge5Si5O20), NaCs(Ge5Si5O20)–2H2 heteroclusters. In this research, hydrogen energy sources on functionalized 2D materials by metals have been shown as promising alternatives for clean energy systems. In a particular way, we have demonstrated here that (Ge5Si5O20) weakly adsorbs H2. At the same time, the Li/Na/K decoration significantly enhances the H2 interaction, accommodating to H2 molecules by a stronger physisorption. Doping Rb or Sc on Ge5Si5O20 can increase battery capacity through LiRb (Ge5Si5O20), LiCs(Ge5Si5O20), NaRb(Ge5Si5O20), NaCs(Ge5Si5O20), KRb(Ge5Si5O20), KCs(Ge5Si5O20) nanoclusters for hydrogen adsorption process and could improve the rate performances by enhancing electrical conductivity. A small portion of “Rb or Cs” entered the “Ge–Si” layer to replace the Li, Na or K sites might improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. Among these, LiRb (Ge5Si5O20), NaRb(Ge5Si5O20) and KRb(Ge5Si5O20) pretend to show the most hope in terms of “Rb” doping which can augment the capacity owing to higher surface capacitive impacts.To be specific, a scalable method is developed to fabricate the nanocomposite which acts as a simulated anode for Li-ion intercalation and subsequent Li alkali metal (Na, K/Rb, Cs) alloys owing to enhanced lithiophilicity and sufficient ion-conducting pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信