I S Ilnitskiy, G K Ryabykh, D A Marakulina, A A Mironov, Yu A Medvedeva
{"title":"HiMoRNA和RNAChrom的整合:利用rna -染色质相互作用组数据验证长链非编码rna在人类基因表观遗传调控中的功能作用。","authors":"I S Ilnitskiy, G K Ryabykh, D A Marakulina, A A Mironov, Yu A Medvedeva","doi":"10.32607/actanaturae.27543","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) play a crucial role in the epigenetic regulation of gene expression by recruiting chromatin-modifying proteins to specific genomic loci. Two databases, previously developed by our groups, HiMoRNA and RNA-Chrom, provide valuable insights into this process. The former contains data on epigenetic modification regions (peaks) correlated with lncRNA expression, while the latter offers genome-wide RNA-chromatin interaction data for tens of thousands of RNAs. This study integrated the two resources to generate experimentally supported, interpretable hypotheses regarding lncRNA-mediated epigenetic gene expression regulation. We adapted the web interfaces of HiMoRNA and RNA-Chrom to enable the retrieval of chromatin contacts for each \"lncRNA-pigenetic modification-ssociated gene\" triad from HiMoRNA, either at specific genomic loci or genome-wide via RNA-Chrom. The integration analysis revealed that for the lncRNAs MALAT1, HOXC-AS2, NEAT1, NR2F1-AS1, PVT1, and MEG3, most HiMoRNA peaks are located within 25 kb of their RNA-Chrom contacts. Further investigation confirmed the RNA-hromatin contacts of MIR31HG and PVT1 lncRNAs, with HiMoRNA peaks for H3K27ac and H3K27me3 marks in the loci of the genes <i>GLI2</i> and <i>LATS2</i>, respectively, which are known to be regulated by these RNAs. Thus, the integration of HiMoRNA and RNA-Chrom offers a powerful platform to elucidate the role of specific lncRNAs in the regulation of histone modifications at both individual loci and genome-wide levels. We expect this integration to help significantly advance the functional annotation of human lncRNAs.</p>","PeriodicalId":6989,"journal":{"name":"Acta Naturae","volume":"17 2","pages":"98-109"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of HiMoRNA and RNAChrom: Validation of the Functional Role of Long Non-coding RNAs in the Epigenetic Regulation of Human Genes Using RNA-Chromatin Interactome Data.\",\"authors\":\"I S Ilnitskiy, G K Ryabykh, D A Marakulina, A A Mironov, Yu A Medvedeva\",\"doi\":\"10.32607/actanaturae.27543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long non-coding RNAs (lncRNAs) play a crucial role in the epigenetic regulation of gene expression by recruiting chromatin-modifying proteins to specific genomic loci. Two databases, previously developed by our groups, HiMoRNA and RNA-Chrom, provide valuable insights into this process. The former contains data on epigenetic modification regions (peaks) correlated with lncRNA expression, while the latter offers genome-wide RNA-chromatin interaction data for tens of thousands of RNAs. This study integrated the two resources to generate experimentally supported, interpretable hypotheses regarding lncRNA-mediated epigenetic gene expression regulation. We adapted the web interfaces of HiMoRNA and RNA-Chrom to enable the retrieval of chromatin contacts for each \\\"lncRNA-pigenetic modification-ssociated gene\\\" triad from HiMoRNA, either at specific genomic loci or genome-wide via RNA-Chrom. The integration analysis revealed that for the lncRNAs MALAT1, HOXC-AS2, NEAT1, NR2F1-AS1, PVT1, and MEG3, most HiMoRNA peaks are located within 25 kb of their RNA-Chrom contacts. Further investigation confirmed the RNA-hromatin contacts of MIR31HG and PVT1 lncRNAs, with HiMoRNA peaks for H3K27ac and H3K27me3 marks in the loci of the genes <i>GLI2</i> and <i>LATS2</i>, respectively, which are known to be regulated by these RNAs. Thus, the integration of HiMoRNA and RNA-Chrom offers a powerful platform to elucidate the role of specific lncRNAs in the regulation of histone modifications at both individual loci and genome-wide levels. We expect this integration to help significantly advance the functional annotation of human lncRNAs.</p>\",\"PeriodicalId\":6989,\"journal\":{\"name\":\"Acta Naturae\",\"volume\":\"17 2\",\"pages\":\"98-109\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Naturae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32607/actanaturae.27543\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Naturae","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32607/actanaturae.27543","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Integration of HiMoRNA and RNAChrom: Validation of the Functional Role of Long Non-coding RNAs in the Epigenetic Regulation of Human Genes Using RNA-Chromatin Interactome Data.
Long non-coding RNAs (lncRNAs) play a crucial role in the epigenetic regulation of gene expression by recruiting chromatin-modifying proteins to specific genomic loci. Two databases, previously developed by our groups, HiMoRNA and RNA-Chrom, provide valuable insights into this process. The former contains data on epigenetic modification regions (peaks) correlated with lncRNA expression, while the latter offers genome-wide RNA-chromatin interaction data for tens of thousands of RNAs. This study integrated the two resources to generate experimentally supported, interpretable hypotheses regarding lncRNA-mediated epigenetic gene expression regulation. We adapted the web interfaces of HiMoRNA and RNA-Chrom to enable the retrieval of chromatin contacts for each "lncRNA-pigenetic modification-ssociated gene" triad from HiMoRNA, either at specific genomic loci or genome-wide via RNA-Chrom. The integration analysis revealed that for the lncRNAs MALAT1, HOXC-AS2, NEAT1, NR2F1-AS1, PVT1, and MEG3, most HiMoRNA peaks are located within 25 kb of their RNA-Chrom contacts. Further investigation confirmed the RNA-hromatin contacts of MIR31HG and PVT1 lncRNAs, with HiMoRNA peaks for H3K27ac and H3K27me3 marks in the loci of the genes GLI2 and LATS2, respectively, which are known to be regulated by these RNAs. Thus, the integration of HiMoRNA and RNA-Chrom offers a powerful platform to elucidate the role of specific lncRNAs in the regulation of histone modifications at both individual loci and genome-wide levels. We expect this integration to help significantly advance the functional annotation of human lncRNAs.
期刊介绍:
Acta Naturae is an international journal on life sciences based in Moscow, Russia.
Our goal is to present scientific work and discovery in molecular biology, biochemistry, biomedical disciplines and biotechnology. These fields represent the most important priorities for the research and engineering development both in Russia and worldwide. Acta Naturae is also a periodical for those who are curious in various aspects of biotechnological business, innovations in pharmaceutical areas, intellectual property protection and social consequences of scientific progress. The journal publishes analytical industrial surveys focused on the development of different spheres of modern life science and technology.
Being a radically new and totally unique journal in Russia, Acta Naturae is useful to both representatives of fundamental research and experts in applied sciences.