钠促进MoS2生长的扩散和表面效应。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jehyun Oh, Yoonbeen Kang, Jae Hun Seol, Yong Hui Kim, Jinyoung Seo, Sang Uck Lee, Sang-Yong Ju
{"title":"钠促进MoS2生长的扩散和表面效应。","authors":"Jehyun Oh,&nbsp;Yoonbeen Kang,&nbsp;Jae Hun Seol,&nbsp;Yong Hui Kim,&nbsp;Jinyoung Seo,&nbsp;Sang Uck Lee,&nbsp;Sang-Yong Ju","doi":"10.1002/smtd.202500813","DOIUrl":null,"url":null,"abstract":"<p>Understanding precursor diffusion and substrate interaction is key to advancing chemical vapor deposition (CVD) of transition metal dichalcogenides (TMCs), yet direct observation has remained a challenge due to limited real-time observation. Here, MoS<sub>2</sub> growth is directly monitored to investigate the kinetics and influence of the precursor/sodium droplet eutectic (SODE). Serving as a catalyst, SODE migrates from the basal plane to the edges and substrate interface, promoting growth and enabling grain translation and rotation. Kinetic analysis shows MoS<sub>2</sub> grows more readily on its own surface than on SiO<sub>2</sub>, indicating a thermodynamic-kinetic interplay supported by density functional theory calculations. Notably, larger SODE droplets enhance such grain dynamics, while submicron-scale SODE exhibits extended diffusion, enabling uniform, large-area growth. These findings highlight the critical role of molten metal diffusion in growth continuity and provide new insights for optimizing scalable, cost-effective TMC fabrication.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 9","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smtd.202500813","citationCount":"0","resultStr":"{\"title\":\"Diffusion and Surface Effects on Sodium-Promoted MoS2 Growth Observed in Operando\",\"authors\":\"Jehyun Oh,&nbsp;Yoonbeen Kang,&nbsp;Jae Hun Seol,&nbsp;Yong Hui Kim,&nbsp;Jinyoung Seo,&nbsp;Sang Uck Lee,&nbsp;Sang-Yong Ju\",\"doi\":\"10.1002/smtd.202500813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding precursor diffusion and substrate interaction is key to advancing chemical vapor deposition (CVD) of transition metal dichalcogenides (TMCs), yet direct observation has remained a challenge due to limited real-time observation. Here, MoS<sub>2</sub> growth is directly monitored to investigate the kinetics and influence of the precursor/sodium droplet eutectic (SODE). Serving as a catalyst, SODE migrates from the basal plane to the edges and substrate interface, promoting growth and enabling grain translation and rotation. Kinetic analysis shows MoS<sub>2</sub> grows more readily on its own surface than on SiO<sub>2</sub>, indicating a thermodynamic-kinetic interplay supported by density functional theory calculations. Notably, larger SODE droplets enhance such grain dynamics, while submicron-scale SODE exhibits extended diffusion, enabling uniform, large-area growth. These findings highlight the critical role of molten metal diffusion in growth continuity and provide new insights for optimizing scalable, cost-effective TMC fabrication.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smtd.202500813\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500813\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500813","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解前驱体扩散和衬底相互作用是推进过渡金属二硫族化合物化学气相沉积(CVD)的关键,但由于实时观测有限,直接观测仍然是一个挑战。在这里,直接监测MoS2的生长,以研究前驱体/钠滴共晶(SODE)的动力学和影响。作为催化剂,SODE从基面迁移到边缘和衬底界面,促进生长并使晶粒平移和旋转。动力学分析表明,MoS2在自身表面比在SiO2表面更容易生长,这表明密度泛函理论计算支持了热力学-动力学相互作用。值得注意的是,较大的SODE液滴增强了这种颗粒动力学,而亚微米尺度的SODE表现出扩展的扩散,从而实现均匀的大面积生长。这些发现突出了熔融金属扩散在生长连续性中的关键作用,并为优化可扩展,具有成本效益的TMC制造提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diffusion and Surface Effects on Sodium-Promoted MoS2 Growth Observed in Operando

Diffusion and Surface Effects on Sodium-Promoted MoS2 Growth Observed in Operando

Understanding precursor diffusion and substrate interaction is key to advancing chemical vapor deposition (CVD) of transition metal dichalcogenides (TMCs), yet direct observation has remained a challenge due to limited real-time observation. Here, MoS2 growth is directly monitored to investigate the kinetics and influence of the precursor/sodium droplet eutectic (SODE). Serving as a catalyst, SODE migrates from the basal plane to the edges and substrate interface, promoting growth and enabling grain translation and rotation. Kinetic analysis shows MoS2 grows more readily on its own surface than on SiO2, indicating a thermodynamic-kinetic interplay supported by density functional theory calculations. Notably, larger SODE droplets enhance such grain dynamics, while submicron-scale SODE exhibits extended diffusion, enabling uniform, large-area growth. These findings highlight the critical role of molten metal diffusion in growth continuity and provide new insights for optimizing scalable, cost-effective TMC fabrication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信