结合4D打印和熔融电书写增强再生小直径血管移植物。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Max von Witzleben, Akvilė Gasiūnaitė, Marlene Ihle, Ashwini Rahul Akkineni, Kathleen Schütz, Tilman Ahlfeld, Michael Gelinsky, Anja Lode, Sarah Duin
{"title":"结合4D打印和熔融电书写增强再生小直径血管移植物。","authors":"Max von Witzleben, Akvilė Gasiūnaitė, Marlene Ihle, Ashwini Rahul Akkineni, Kathleen Schütz, Tilman Ahlfeld, Michael Gelinsky, Anja Lode, Sarah Duin","doi":"10.1002/adhm.202502380","DOIUrl":null,"url":null,"abstract":"<p><p>The development of mechanically robust, cell-instructive, and seweable small-diameter (≤ Ø 6 mm) tubular scaffolds remain a major challenge in vascular tissue engineering. Here, a hybrid biofabrication strategy is presented that combines 4D printing of alginate-methylcellulose (AlgMC) hydrogels with melt electrowritten (MEW) poly(ε-caprolactone) (PCL) reinforcement to produce tubular constructs with programmable shape-morphing capacity. The MEW fiber meshes significantly improve mechanical integrity, enabling suturing and perfusion, while preserving the anisotropic swelling behavior required for morphogenesis. Scaffold functionalization using human blood-derived protein coatings - such as fresh frozen plasma, platelet lysate, and fibrinogen - markedly enhances cellular adhesion and fibroblast proliferation without compromising structural transformation. Biological evaluation using mono and co-cultures of fibroblasts, endothelial cells (HUVEC), and vascular smooth muscle cells (vSMC) reveals the formation of organized bi-layers and phenotype-specific cell morphologies on AlgMC/PCL composites. Notably, a confluent endothelial layer promotes contractile marker expression in vSMC, while vSMC support endothelial coverage in the absence of a growth-arrested fibroblast feeder layer, indicating reciprocal stabilization. While further optimization is needed to meet the demands of small-diameter vascular grafts fully, the presented system offers a versatile and promising platform for engineering soft tissue constructs that benefit from topographical guidance, spatially controlled adhesion, and adaptive geometry.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02380"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniting 4D Printing and Melt Electrowriting for the Enhancement of Regenerative Small Diameter Vascular Grafts.\",\"authors\":\"Max von Witzleben, Akvilė Gasiūnaitė, Marlene Ihle, Ashwini Rahul Akkineni, Kathleen Schütz, Tilman Ahlfeld, Michael Gelinsky, Anja Lode, Sarah Duin\",\"doi\":\"10.1002/adhm.202502380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of mechanically robust, cell-instructive, and seweable small-diameter (≤ Ø 6 mm) tubular scaffolds remain a major challenge in vascular tissue engineering. Here, a hybrid biofabrication strategy is presented that combines 4D printing of alginate-methylcellulose (AlgMC) hydrogels with melt electrowritten (MEW) poly(ε-caprolactone) (PCL) reinforcement to produce tubular constructs with programmable shape-morphing capacity. The MEW fiber meshes significantly improve mechanical integrity, enabling suturing and perfusion, while preserving the anisotropic swelling behavior required for morphogenesis. Scaffold functionalization using human blood-derived protein coatings - such as fresh frozen plasma, platelet lysate, and fibrinogen - markedly enhances cellular adhesion and fibroblast proliferation without compromising structural transformation. Biological evaluation using mono and co-cultures of fibroblasts, endothelial cells (HUVEC), and vascular smooth muscle cells (vSMC) reveals the formation of organized bi-layers and phenotype-specific cell morphologies on AlgMC/PCL composites. Notably, a confluent endothelial layer promotes contractile marker expression in vSMC, while vSMC support endothelial coverage in the absence of a growth-arrested fibroblast feeder layer, indicating reciprocal stabilization. While further optimization is needed to meet the demands of small-diameter vascular grafts fully, the presented system offers a versatile and promising platform for engineering soft tissue constructs that benefit from topographical guidance, spatially controlled adhesion, and adaptive geometry.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e02380\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202502380\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502380","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在血管组织工程中,开发机械坚固、细胞指导和可缝合的小直径(≤Ø 6 mm)管状支架仍然是一个主要挑战。本文提出了一种混合生物制造策略,将海藻酸盐-甲基纤维素(AlgMC)水凝胶的4D打印与熔融电写(MEW)聚(ε-己内酯)(PCL)增强相结合,生产出具有可编程形状变形能力的管状结构。MEW纤维网显著提高了机械完整性,实现了缝合和灌注,同时保持了形态形成所需的各向异性肿胀行为。使用人血源性蛋白涂层(如新鲜冷冻血浆、血小板裂解液和纤维蛋白原)实现支架功能,可显著增强细胞粘附和成纤维细胞增殖,同时不影响结构转化。利用成纤维细胞、内皮细胞(HUVEC)和血管平滑肌细胞(vSMC)的单一和共培养进行生物学评价,揭示了AlgMC/PCL复合材料上有组织的双层结构和表型特异性细胞形态的形成。值得注意的是,融合的内皮层促进了vSMC中收缩标记物的表达,而vSMC在缺乏生长受阻的成纤维细胞喂养层的情况下支持内皮覆盖,表明相互稳定。虽然需要进一步优化以充分满足小直径血管移植物的需求,但该系统为工程软组织构建提供了一个多功能且有前途的平台,该平台受益于地形引导,空间控制粘附和自适应几何结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniting 4D Printing and Melt Electrowriting for the Enhancement of Regenerative Small Diameter Vascular Grafts.

The development of mechanically robust, cell-instructive, and seweable small-diameter (≤ Ø 6 mm) tubular scaffolds remain a major challenge in vascular tissue engineering. Here, a hybrid biofabrication strategy is presented that combines 4D printing of alginate-methylcellulose (AlgMC) hydrogels with melt electrowritten (MEW) poly(ε-caprolactone) (PCL) reinforcement to produce tubular constructs with programmable shape-morphing capacity. The MEW fiber meshes significantly improve mechanical integrity, enabling suturing and perfusion, while preserving the anisotropic swelling behavior required for morphogenesis. Scaffold functionalization using human blood-derived protein coatings - such as fresh frozen plasma, platelet lysate, and fibrinogen - markedly enhances cellular adhesion and fibroblast proliferation without compromising structural transformation. Biological evaluation using mono and co-cultures of fibroblasts, endothelial cells (HUVEC), and vascular smooth muscle cells (vSMC) reveals the formation of organized bi-layers and phenotype-specific cell morphologies on AlgMC/PCL composites. Notably, a confluent endothelial layer promotes contractile marker expression in vSMC, while vSMC support endothelial coverage in the absence of a growth-arrested fibroblast feeder layer, indicating reciprocal stabilization. While further optimization is needed to meet the demands of small-diameter vascular grafts fully, the presented system offers a versatile and promising platform for engineering soft tissue constructs that benefit from topographical guidance, spatially controlled adhesion, and adaptive geometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信