Gabriela Vega-Hernández, Jesse Duque, Brandon J. C. Klein, Dalia M. Soueid, Jason C. Rech, Hui Wang, Wenhui Zhou and Amanda L. Garner*,
{"title":"CRISPR - RiPCA用于研究eIF4E-m7GpppX封顶mRNA相互作用。","authors":"Gabriela Vega-Hernández, Jesse Duque, Brandon J. C. Klein, Dalia M. Soueid, Jason C. Rech, Hui Wang, Wenhui Zhou and Amanda L. Garner*, ","doi":"10.1021/acschembio.5c00471","DOIUrl":null,"url":null,"abstract":"<p >Post-transcriptional modifications expand the information encoded by an mRNA. These dynamic and reversible modifications are specifically recognized by reader RNA-binding proteins (RBPs), which mediate the regulation of gene expression, RNA processing, localization, stability, and translation. Given their crucial functions, any disruptions in the normal activity of these readers can have significant implications for cellular health. Consequently, the dysregulation of these RBPs has been associated with neurodegenerative disorders, cancers, and viral infections. Therefore, there has been growing interest in targeting reader RBPs as a potential therapeutic strategy since developing molecules that restore proper RNA processing and function may offer a promising avenue for treating diseases. In this work, we coupled our previously established live-cell RNA-protein interaction (RPI) assay, RNA interaction with Protein-mediated Complementation Assay (RiPCA), with CRISPR technology to build a new platform, CRISPR RiPCA. As a model for development, we utilized the interaction of eukaryotic translation initiation factor 4E (eIF4E), a reader RBP that binds to the m<sup>7</sup>GpppX cap present at the 5′ terminus of coding mRNAs, with an m<sup>7</sup>G capped RNA substrate. Using eIF4E CRISPR RiPCA, we demonstrate our technology’s potential for measuring on-target activity of inhibitors of the eIF4E RPI of relevance to cancer drug discovery.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 8","pages":"2038–2048"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR RiPCA for Investigating eIF4E-m7GpppX Capped mRNA Interactions\",\"authors\":\"Gabriela Vega-Hernández, Jesse Duque, Brandon J. C. Klein, Dalia M. Soueid, Jason C. Rech, Hui Wang, Wenhui Zhou and Amanda L. Garner*, \",\"doi\":\"10.1021/acschembio.5c00471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Post-transcriptional modifications expand the information encoded by an mRNA. These dynamic and reversible modifications are specifically recognized by reader RNA-binding proteins (RBPs), which mediate the regulation of gene expression, RNA processing, localization, stability, and translation. Given their crucial functions, any disruptions in the normal activity of these readers can have significant implications for cellular health. Consequently, the dysregulation of these RBPs has been associated with neurodegenerative disorders, cancers, and viral infections. Therefore, there has been growing interest in targeting reader RBPs as a potential therapeutic strategy since developing molecules that restore proper RNA processing and function may offer a promising avenue for treating diseases. In this work, we coupled our previously established live-cell RNA-protein interaction (RPI) assay, RNA interaction with Protein-mediated Complementation Assay (RiPCA), with CRISPR technology to build a new platform, CRISPR RiPCA. As a model for development, we utilized the interaction of eukaryotic translation initiation factor 4E (eIF4E), a reader RBP that binds to the m<sup>7</sup>GpppX cap present at the 5′ terminus of coding mRNAs, with an m<sup>7</sup>G capped RNA substrate. Using eIF4E CRISPR RiPCA, we demonstrate our technology’s potential for measuring on-target activity of inhibitors of the eIF4E RPI of relevance to cancer drug discovery.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\"20 8\",\"pages\":\"2038–2048\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschembio.5c00471\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.5c00471","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CRISPR RiPCA for Investigating eIF4E-m7GpppX Capped mRNA Interactions
Post-transcriptional modifications expand the information encoded by an mRNA. These dynamic and reversible modifications are specifically recognized by reader RNA-binding proteins (RBPs), which mediate the regulation of gene expression, RNA processing, localization, stability, and translation. Given their crucial functions, any disruptions in the normal activity of these readers can have significant implications for cellular health. Consequently, the dysregulation of these RBPs has been associated with neurodegenerative disorders, cancers, and viral infections. Therefore, there has been growing interest in targeting reader RBPs as a potential therapeutic strategy since developing molecules that restore proper RNA processing and function may offer a promising avenue for treating diseases. In this work, we coupled our previously established live-cell RNA-protein interaction (RPI) assay, RNA interaction with Protein-mediated Complementation Assay (RiPCA), with CRISPR technology to build a new platform, CRISPR RiPCA. As a model for development, we utilized the interaction of eukaryotic translation initiation factor 4E (eIF4E), a reader RBP that binds to the m7GpppX cap present at the 5′ terminus of coding mRNAs, with an m7G capped RNA substrate. Using eIF4E CRISPR RiPCA, we demonstrate our technology’s potential for measuring on-target activity of inhibitors of the eIF4E RPI of relevance to cancer drug discovery.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.