Eu/Fe共掺杂Bi0.5Na0.5TiO3薄膜中铁电性的协同增强:基于发光探测和缺陷工程的机制研究。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Hu, Yifei Liu, Huazhang Zhang, Jie Shen, Jing Zhou* and Wen Chen*, 
{"title":"Eu/Fe共掺杂Bi0.5Na0.5TiO3薄膜中铁电性的协同增强:基于发光探测和缺陷工程的机制研究。","authors":"Yang Hu,&nbsp;Yifei Liu,&nbsp;Huazhang Zhang,&nbsp;Jie Shen,&nbsp;Jing Zhou* and Wen Chen*,&nbsp;","doi":"10.1021/acsami.5c10079","DOIUrl":null,"url":null,"abstract":"<p >Defect engineering is a pivotal strategy for optimizing the polarization intensity in ferroelectrics. However, the synergistic effects of codoping transition metals and rare-earth ions into ferroelectric systems remain underexplored, and the resulting atomic-scale coupling mechanisms are not fully deciphered. This study demonstrates a synergistic enhancement of ferroelectric polarization in lead-free Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) thin films through Eu/Fe codoping while elucidating the underlying mechanism via luminescent probing and simulation calculation. Remarkably, codoping achieves a 130.9% enhancement in saturated polarization (<i>P</i><sub>s</sub>). The synergistic enhancement derives from the formation of [Eu<sup>3+</sup>-Fe<sup>3+</sup>] defect pairs and the amplification of [TiO<sub>6</sub>] octahedral distortion. This local structural asymmetry variations are characterized by in situ luminescent probes of Eu<sup>3+</sup> and first-principles calculation. It is confirmed that the coupling mechanism is related with the [Eu<sup>3+</sup>-Fe<sup>3+</sup>] defect-pair-induced electron density redistribution and dipole–dipole coupling energy transfer process. These findings provide atomic-scale insights into rare-earth/transition-metal coupling mechanisms and advance defect engineering strategies for high-performance multifunctional ferroelectric devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 33","pages":"47220–47229"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Enhancement of Ferroelectricity in Eu/Fe Codoped Bi0.5Na0.5TiO3 Thin Films: Mechanistic Insights via Luminescent Probing and Defect Engineering\",\"authors\":\"Yang Hu,&nbsp;Yifei Liu,&nbsp;Huazhang Zhang,&nbsp;Jie Shen,&nbsp;Jing Zhou* and Wen Chen*,&nbsp;\",\"doi\":\"10.1021/acsami.5c10079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Defect engineering is a pivotal strategy for optimizing the polarization intensity in ferroelectrics. However, the synergistic effects of codoping transition metals and rare-earth ions into ferroelectric systems remain underexplored, and the resulting atomic-scale coupling mechanisms are not fully deciphered. This study demonstrates a synergistic enhancement of ferroelectric polarization in lead-free Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) thin films through Eu/Fe codoping while elucidating the underlying mechanism via luminescent probing and simulation calculation. Remarkably, codoping achieves a 130.9% enhancement in saturated polarization (<i>P</i><sub>s</sub>). The synergistic enhancement derives from the formation of [Eu<sup>3+</sup>-Fe<sup>3+</sup>] defect pairs and the amplification of [TiO<sub>6</sub>] octahedral distortion. This local structural asymmetry variations are characterized by in situ luminescent probes of Eu<sup>3+</sup> and first-principles calculation. It is confirmed that the coupling mechanism is related with the [Eu<sup>3+</sup>-Fe<sup>3+</sup>] defect-pair-induced electron density redistribution and dipole–dipole coupling energy transfer process. These findings provide atomic-scale insights into rare-earth/transition-metal coupling mechanisms and advance defect engineering strategies for high-performance multifunctional ferroelectric devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 33\",\"pages\":\"47220–47229\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c10079\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c10079","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缺陷工程是优化铁电体极化强度的关键策略。然而,过渡金属和稀土离子共掺杂在铁电系统中的协同效应仍未得到充分探索,由此产生的原子尺度耦合机制尚未完全破译。本研究通过Eu/Fe共掺杂证明了无铅Bi0.5Na0.5TiO3 (BNT)薄膜中铁电极化的协同增强,并通过发光探测和模拟计算阐明了其潜在机制。值得注意的是,共掺杂使饱和极化(Ps)增强了130.9%。这种增效作用源于[Eu3+-Fe3+]缺陷对的形成和[TiO6]八面体畸变的放大。用Eu3+原位发光探针和第一性原理计算表征了这种局部结构的不对称变化。证实了耦合机制与[Eu3+-Fe3+]缺陷对诱导的电子密度重分布和偶极-偶极耦合能量传递过程有关。这些发现提供了稀土/过渡金属耦合机制的原子尺度见解,并推进了高性能多功能铁电器件的缺陷工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Enhancement of Ferroelectricity in Eu/Fe Codoped Bi0.5Na0.5TiO3 Thin Films: Mechanistic Insights via Luminescent Probing and Defect Engineering

Synergistic Enhancement of Ferroelectricity in Eu/Fe Codoped Bi0.5Na0.5TiO3 Thin Films: Mechanistic Insights via Luminescent Probing and Defect Engineering

Defect engineering is a pivotal strategy for optimizing the polarization intensity in ferroelectrics. However, the synergistic effects of codoping transition metals and rare-earth ions into ferroelectric systems remain underexplored, and the resulting atomic-scale coupling mechanisms are not fully deciphered. This study demonstrates a synergistic enhancement of ferroelectric polarization in lead-free Bi0.5Na0.5TiO3 (BNT) thin films through Eu/Fe codoping while elucidating the underlying mechanism via luminescent probing and simulation calculation. Remarkably, codoping achieves a 130.9% enhancement in saturated polarization (Ps). The synergistic enhancement derives from the formation of [Eu3+-Fe3+] defect pairs and the amplification of [TiO6] octahedral distortion. This local structural asymmetry variations are characterized by in situ luminescent probes of Eu3+ and first-principles calculation. It is confirmed that the coupling mechanism is related with the [Eu3+-Fe3+] defect-pair-induced electron density redistribution and dipole–dipole coupling energy transfer process. These findings provide atomic-scale insights into rare-earth/transition-metal coupling mechanisms and advance defect engineering strategies for high-performance multifunctional ferroelectric devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信