多晶CuO纳米棒的定制重构促进了CO2电还原过程中的C─C耦合

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyeon‐Seok Bang, Young‐Jin Ko, Hyo Sang Jeon, Eugene Huh, Eung Dab Kim, Min Gwan Ha, Chulwan Lim, Jiho Jeon, Seohyeon Ka, Dogyeong Kim, Xiaojie Zhang, Yeongjin Kim, Kyeongsu Kim, Woong Hee Lee, Jae‐Young Choi, Hyung‐Suk Oh
{"title":"多晶CuO纳米棒的定制重构促进了CO2电还原过程中的C─C耦合","authors":"Hyeon‐Seok Bang, Young‐Jin Ko, Hyo Sang Jeon, Eugene Huh, Eung Dab Kim, Min Gwan Ha, Chulwan Lim, Jiho Jeon, Seohyeon Ka, Dogyeong Kim, Xiaojie Zhang, Yeongjin Kim, Kyeongsu Kim, Woong Hee Lee, Jae‐Young Choi, Hyung‐Suk Oh","doi":"10.1002/adfm.202511894","DOIUrl":null,"url":null,"abstract":"Designing structurally robust and functionally active catalysts is essential for advancing CO<jats:sub>2</jats:sub> electroreduction toward multicarbon (C<jats:sub>2+</jats:sub>) products. Here, a crystallinity‐engineering strategy is reported to regulate the reconstruction behavior of CuO nanorod catalysts and stabilize critical surface features that promote C─C coupling. Specifically, low‐polycrystalline CuO (LP‐CuO) nanorods undergo directional reconstruction into rod‐like metallic Cu structures under electrochemical conditions, effectively preserving surface hydroxides and partial Cu<jats:sup>+</jats:sup> oxidation states. In‐situ/operando X‐ray absorption spectroscopy confirms the retention of Cu(OH)<jats:sub>2</jats:sub> species in LP‐CuO, while surface‐enhanced infrared absorption spectroscopy reveals the generation of abundant C<jats:sub>2+</jats:sub> intermediates and a blueshift in interfacial water vibrations, indicating increased free water and enhanced proton‐donor activity. This interplay between stabilized surface hydroxides and interfacial water dynamics enables efficient C─C coupling and selective C<jats:sub>2+</jats:sub> production, achieving a partial current density of 984 mA cm<jats:sup>−2</jats:sup>. The findings provide fundamental insights into the structure–function relationship of Cu‐based catalysts and establish crystallinity modulation as a generalizable design principle for high‐performance and durable electrocatalysts in CO<jats:sub>2</jats:sub> conversion technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"15 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored Reconstruction of Polycrystalline CuO Nanorods Promotes C─C Coupling in CO2 Electroreduction\",\"authors\":\"Hyeon‐Seok Bang, Young‐Jin Ko, Hyo Sang Jeon, Eugene Huh, Eung Dab Kim, Min Gwan Ha, Chulwan Lim, Jiho Jeon, Seohyeon Ka, Dogyeong Kim, Xiaojie Zhang, Yeongjin Kim, Kyeongsu Kim, Woong Hee Lee, Jae‐Young Choi, Hyung‐Suk Oh\",\"doi\":\"10.1002/adfm.202511894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing structurally robust and functionally active catalysts is essential for advancing CO<jats:sub>2</jats:sub> electroreduction toward multicarbon (C<jats:sub>2+</jats:sub>) products. Here, a crystallinity‐engineering strategy is reported to regulate the reconstruction behavior of CuO nanorod catalysts and stabilize critical surface features that promote C─C coupling. Specifically, low‐polycrystalline CuO (LP‐CuO) nanorods undergo directional reconstruction into rod‐like metallic Cu structures under electrochemical conditions, effectively preserving surface hydroxides and partial Cu<jats:sup>+</jats:sup> oxidation states. In‐situ/operando X‐ray absorption spectroscopy confirms the retention of Cu(OH)<jats:sub>2</jats:sub> species in LP‐CuO, while surface‐enhanced infrared absorption spectroscopy reveals the generation of abundant C<jats:sub>2+</jats:sub> intermediates and a blueshift in interfacial water vibrations, indicating increased free water and enhanced proton‐donor activity. This interplay between stabilized surface hydroxides and interfacial water dynamics enables efficient C─C coupling and selective C<jats:sub>2+</jats:sub> production, achieving a partial current density of 984 mA cm<jats:sup>−2</jats:sup>. The findings provide fundamental insights into the structure–function relationship of Cu‐based catalysts and establish crystallinity modulation as a generalizable design principle for high‐performance and durable electrocatalysts in CO<jats:sub>2</jats:sub> conversion technologies.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511894\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511894","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计结构坚固、功能活跃的催化剂是推动CO2电还原生产多碳(C2+)产品的关键。本文报道了一种结晶工程策略来调节CuO纳米棒催化剂的重建行为,并稳定促进C─C耦合的关键表面特征。具体来说,低多晶CuO (LP - CuO)纳米棒在电化学条件下定向重建成棒状金属Cu结构,有效地保留了表面氢氧化物和部分Cu+氧化态。原位/operando X射线吸收光谱证实了LP - CuO中Cu(OH)2的保留,而表面增强红外吸收光谱显示了大量C2+中间体的产生和界面水振动中的蓝移,表明自由水的增加和质子供体活性的增强。稳定的表面氢氧化物和界面水动力学之间的相互作用实现了高效的C─C耦合和选择性的C2+产生,实现了984毫安厘米−2的局部电流密度。这些发现为铜基催化剂的结构-功能关系提供了基本的见解,并建立了结晶度调制作为CO2转化技术中高性能和耐用电催化剂的通用设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailored Reconstruction of Polycrystalline CuO Nanorods Promotes C─C Coupling in CO2 Electroreduction
Designing structurally robust and functionally active catalysts is essential for advancing CO2 electroreduction toward multicarbon (C2+) products. Here, a crystallinity‐engineering strategy is reported to regulate the reconstruction behavior of CuO nanorod catalysts and stabilize critical surface features that promote C─C coupling. Specifically, low‐polycrystalline CuO (LP‐CuO) nanorods undergo directional reconstruction into rod‐like metallic Cu structures under electrochemical conditions, effectively preserving surface hydroxides and partial Cu+ oxidation states. In‐situ/operando X‐ray absorption spectroscopy confirms the retention of Cu(OH)2 species in LP‐CuO, while surface‐enhanced infrared absorption spectroscopy reveals the generation of abundant C2+ intermediates and a blueshift in interfacial water vibrations, indicating increased free water and enhanced proton‐donor activity. This interplay between stabilized surface hydroxides and interfacial water dynamics enables efficient C─C coupling and selective C2+ production, achieving a partial current density of 984 mA cm−2. The findings provide fundamental insights into the structure–function relationship of Cu‐based catalysts and establish crystallinity modulation as a generalizable design principle for high‐performance and durable electrocatalysts in CO2 conversion technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信