“凝胶-树脂”多功能电解质用于增强锂离子结构电池复合材料的电化学和机械性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weiye He, Zhendong Liu, Haiqi Zhang, Shuai Liu, Zhanlin Feng, Jinrui Ye
{"title":"“凝胶-树脂”多功能电解质用于增强锂离子结构电池复合材料的电化学和机械性能","authors":"Weiye He, Zhendong Liu, Haiqi Zhang, Shuai Liu, Zhanlin Feng, Jinrui Ye","doi":"10.1002/adfm.202507493","DOIUrl":null,"url":null,"abstract":"Structural battery composites (SBCs) integrate mechanical load‐bearing capability with energy storage functions, offering potential for significant weight reduction. However, the commercial application of SBCs remains hindered by the trade‐off between electrochemical performance and mechanical properties. This study presents a novel dual‐phase Gel‐in‐Resin (GIR) electrolyte, comprising a PVDF‐HFP‐based gel embedded within a porous epoxy resin framework. The epoxy skeleton effectively bonds carbon and glass fabrics while providing adequate space for the gel electrolyte. Electrostatic interactions between succinonitrile groups and Li⁺ ions stabilize the electrochemical window (5.21 V) and enhance the Li‐ion transference number (<jats:italic>t</jats:italic><jats:sub>Li</jats:sub>⁺ = 0.59), promoting the formation of a robust LiF/Li<jats:sub>3</jats:sub>N hybrid solid electrolyte interphase. The coupling of the epoxy resin and gel electrolyte improves mechanical properties, increasing the tensile modulus by 22%. Finite element modeling reveals that structural barriers and ion pathways within the epoxy framework restrict Li⁺ transverse migration and inhibit dendrite formation. As a result, lithium iron phosphate (LFP) || graphite SBCs with GIR electrolyte exhibit excellent electrochemical performance (120.43 mAh g<jats:sup>−1</jats:sup> at 0.2 C) and exceptional cycling stability (81.44% retention after 180 cycles). This work provides a promising pathway for the development of high‐performance SBCs for practical applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"734 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Gel‐in‐Resin” Multifunctional Electrolytes for Enhanced Electrochemical and Mechanical Performance in Lithium‐Ion Structural Battery Composites\",\"authors\":\"Weiye He, Zhendong Liu, Haiqi Zhang, Shuai Liu, Zhanlin Feng, Jinrui Ye\",\"doi\":\"10.1002/adfm.202507493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural battery composites (SBCs) integrate mechanical load‐bearing capability with energy storage functions, offering potential for significant weight reduction. However, the commercial application of SBCs remains hindered by the trade‐off between electrochemical performance and mechanical properties. This study presents a novel dual‐phase Gel‐in‐Resin (GIR) electrolyte, comprising a PVDF‐HFP‐based gel embedded within a porous epoxy resin framework. The epoxy skeleton effectively bonds carbon and glass fabrics while providing adequate space for the gel electrolyte. Electrostatic interactions between succinonitrile groups and Li⁺ ions stabilize the electrochemical window (5.21 V) and enhance the Li‐ion transference number (<jats:italic>t</jats:italic><jats:sub>Li</jats:sub>⁺ = 0.59), promoting the formation of a robust LiF/Li<jats:sub>3</jats:sub>N hybrid solid electrolyte interphase. The coupling of the epoxy resin and gel electrolyte improves mechanical properties, increasing the tensile modulus by 22%. Finite element modeling reveals that structural barriers and ion pathways within the epoxy framework restrict Li⁺ transverse migration and inhibit dendrite formation. As a result, lithium iron phosphate (LFP) || graphite SBCs with GIR electrolyte exhibit excellent electrochemical performance (120.43 mAh g<jats:sup>−1</jats:sup> at 0.2 C) and exceptional cycling stability (81.44% retention after 180 cycles). This work provides a promising pathway for the development of high‐performance SBCs for practical applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"734 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202507493\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结构电池复合材料(sbc)集成了机械承载能力和能量存储功能,具有显著减轻重量的潜力。然而,sbc的商业应用仍然受到电化学性能和机械性能之间权衡的阻碍。本研究提出了一种新型的双相凝胶树脂(GIR)电解质,包括嵌入多孔环氧树脂框架内的PVDF - HFP - based凝胶。环氧骨架有效地粘合碳和玻璃织物,同时为凝胶电解质提供足够的空间。丁二腈基团与Li +离子之间的静电相互作用稳定了电化学窗口(5.21 V),提高了Li +的转移数(tLi + = 0.59),促进了坚固的LiF/Li3N杂化固体电解质界面的形成。环氧树脂与凝胶电解质的偶联改善了材料的力学性能,拉伸模量提高了22%。有限元模型显示,环氧框架内的结构屏障和离子通路限制了Li +的横向迁移,抑制了枝晶的形成。结果表明,采用GIR电解质制备的磷酸铁锂(LFP) ||石墨sbc具有优异的电化学性能(0.2℃时为120.43 mAh g−1)和优异的循环稳定性(180次循环后保持率为81.44%)。这项工作为开发具有实际应用价值的高性能sbc提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“Gel‐in‐Resin” Multifunctional Electrolytes for Enhanced Electrochemical and Mechanical Performance in Lithium‐Ion Structural Battery Composites
Structural battery composites (SBCs) integrate mechanical load‐bearing capability with energy storage functions, offering potential for significant weight reduction. However, the commercial application of SBCs remains hindered by the trade‐off between electrochemical performance and mechanical properties. This study presents a novel dual‐phase Gel‐in‐Resin (GIR) electrolyte, comprising a PVDF‐HFP‐based gel embedded within a porous epoxy resin framework. The epoxy skeleton effectively bonds carbon and glass fabrics while providing adequate space for the gel electrolyte. Electrostatic interactions between succinonitrile groups and Li⁺ ions stabilize the electrochemical window (5.21 V) and enhance the Li‐ion transference number (tLi⁺ = 0.59), promoting the formation of a robust LiF/Li3N hybrid solid electrolyte interphase. The coupling of the epoxy resin and gel electrolyte improves mechanical properties, increasing the tensile modulus by 22%. Finite element modeling reveals that structural barriers and ion pathways within the epoxy framework restrict Li⁺ transverse migration and inhibit dendrite formation. As a result, lithium iron phosphate (LFP) || graphite SBCs with GIR electrolyte exhibit excellent electrochemical performance (120.43 mAh g−1 at 0.2 C) and exceptional cycling stability (81.44% retention after 180 cycles). This work provides a promising pathway for the development of high‐performance SBCs for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信