层次贝叶斯反问题:高维统计观点

IF 6.1 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2025-08-07 DOI:10.1137/24m1629328
Daniel Sanz-Alonso, Nathan Waniorek
{"title":"层次贝叶斯反问题:高维统计观点","authors":"Daniel Sanz-Alonso, Nathan Waniorek","doi":"10.1137/24m1629328","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 67, Issue 3, Page 543-575, August 2025. <br/> Abstract.This paper analyzes hierarchical Bayesian inverse problems using techniques from high-dimensional statistics. Our analysis leverages a property of hierarchical Bayesian regularizers that we call approximate decomposability to obtain nonasymptotic bounds on the reconstruction error attained by maximum a posteriori estimators. The new theory explains how hierarchical Bayesian models that exploit sparsity, group sparsity, and sparse representations of the unknown parameter can achieve accurate reconstructions in high-dimensional settings.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"27 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Bayesian Inverse Problems: A High-Dimensional Statistics Viewpoint\",\"authors\":\"Daniel Sanz-Alonso, Nathan Waniorek\",\"doi\":\"10.1137/24m1629328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 67, Issue 3, Page 543-575, August 2025. <br/> Abstract.This paper analyzes hierarchical Bayesian inverse problems using techniques from high-dimensional statistics. Our analysis leverages a property of hierarchical Bayesian regularizers that we call approximate decomposability to obtain nonasymptotic bounds on the reconstruction error attained by maximum a posteriori estimators. The new theory explains how hierarchical Bayesian models that exploit sparsity, group sparsity, and sparse representations of the unknown parameter can achieve accurate reconstructions in high-dimensional settings.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1629328\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1629328","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM评论,第67卷,第3期,第543-575页,2025年8月。摘要。本文利用高维统计技术分析了层次贝叶斯反问题。我们的分析利用了层次贝叶斯正则化器的一个性质,我们称之为近似可分解性,以获得最大后验估计所获得的重构误差的非渐近界。新理论解释了利用稀疏性、群稀疏性和未知参数的稀疏表示的层次贝叶斯模型如何在高维设置中实现准确的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Bayesian Inverse Problems: A High-Dimensional Statistics Viewpoint
SIAM Review, Volume 67, Issue 3, Page 543-575, August 2025.
Abstract.This paper analyzes hierarchical Bayesian inverse problems using techniques from high-dimensional statistics. Our analysis leverages a property of hierarchical Bayesian regularizers that we call approximate decomposability to obtain nonasymptotic bounds on the reconstruction error attained by maximum a posteriori estimators. The new theory explains how hierarchical Bayesian models that exploit sparsity, group sparsity, and sparse representations of the unknown parameter can achieve accurate reconstructions in high-dimensional settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信