S. Fujimoto, M. Ouchi, K. Kohno, F. Valentino, C. Giménez-Arteaga, G. B. Brammer, L. J. Furtak, M. Kohandel, M. Oguri, A. Pallottini, J. Richard, A. Zitrin, F. E. Bauer, M. Boylan-Kolchin, M. Dessauges-Zavadsky, E. Egami, S. L. Finkelstein, Z. Ma, I. Smail, D. Watson, T. A. Hutchison, J. R. Rigby, B. D. Welch, Y. Ao, L. D. Bradley, G. B. Caminha, K. I. Caputi, D. Espada, R. Endsley, Y. Fudamoto, J. González-López, B. Hatsukade, A. M. Koekemoer, V. Kokorev, N. Laporte, M. Lee, G. E. Magdis, Y. Ono, F. Rizzo, T. Shibuya, K. Shimasaku, F. Sun, S. Toft, H. Umehata, T. Wang, H. Yajima
{"title":"宇宙黎明时由至少15个致密的恒星形成团块组成的原始旋转盘","authors":"S. Fujimoto, M. Ouchi, K. Kohno, F. Valentino, C. Giménez-Arteaga, G. B. Brammer, L. J. Furtak, M. Kohandel, M. Oguri, A. Pallottini, J. Richard, A. Zitrin, F. E. Bauer, M. Boylan-Kolchin, M. Dessauges-Zavadsky, E. Egami, S. L. Finkelstein, Z. Ma, I. Smail, D. Watson, T. A. Hutchison, J. R. Rigby, B. D. Welch, Y. Ao, L. D. Bradley, G. B. Caminha, K. I. Caputi, D. Espada, R. Endsley, Y. Fudamoto, J. González-López, B. Hatsukade, A. M. Koekemoer, V. Kokorev, N. Laporte, M. Lee, G. E. Magdis, Y. Ono, F. Rizzo, T. Shibuya, K. Shimasaku, F. Sun, S. Toft, H. Umehata, T. Wang, H. Yajima","doi":"10.1038/s41550-025-02592-w","DOIUrl":null,"url":null,"abstract":"<p>Early galaxies form through dark matter and gas assembly, evolving into dynamically hot, chaotic structures driven by mergers and feedback. By contrast, remarkably smooth, rotating disks are observed in massive galaxies only 1.4 billion years after the Big Bang, implying rapid dynamical evolution. Probing this evolution mechanism necessitates studies of young galaxies, yet efforts have been hindered by observational limitations in both sensitivity and spatial resolution. Here we report high-resolution observations of a strongly lensed, quintuply imaged, low-luminosity young galaxy at redshift <i>z</i> = 6.072, just 930 million years after the Big Bang. Magnified by gravitational lensing, the galaxy resolves into at least 15 star-forming clumps (effective radii ~10–60 pc), dominating ~70% of the galaxy’s ultraviolet flux. Cool gas emission reveals an underlying rotating disk (rotational-to-random motion ratio 3.58 ± 0.74) in a gravitationally unstable state (Toomre <i>Q</i> ≈ 0.2–0.3) with high surface gas densities comparable to local starbursts (~10<sup>3−5</sup> <i>M</i><sub><span>⊙</span></sub> pc<sup>−2</sup>). These properties suggest that disk instabilities with weak feedback drive prolific clump formation. The extreme clumpiness surpasses galaxies at later epochs and current simulation predictions. Our findings directly connect small-scale internal structures, underlying disk dynamics along with feedback effects at cosmic dawn, potentially explaining the abundance of luminous galaxies observed in the early Universe.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"2 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn\",\"authors\":\"S. Fujimoto, M. Ouchi, K. Kohno, F. Valentino, C. Giménez-Arteaga, G. B. Brammer, L. J. Furtak, M. Kohandel, M. Oguri, A. Pallottini, J. Richard, A. Zitrin, F. E. Bauer, M. Boylan-Kolchin, M. Dessauges-Zavadsky, E. Egami, S. L. Finkelstein, Z. Ma, I. Smail, D. Watson, T. A. Hutchison, J. R. Rigby, B. D. Welch, Y. Ao, L. D. Bradley, G. B. Caminha, K. I. Caputi, D. Espada, R. Endsley, Y. Fudamoto, J. González-López, B. Hatsukade, A. M. Koekemoer, V. Kokorev, N. Laporte, M. Lee, G. E. Magdis, Y. Ono, F. Rizzo, T. Shibuya, K. Shimasaku, F. Sun, S. Toft, H. Umehata, T. Wang, H. Yajima\",\"doi\":\"10.1038/s41550-025-02592-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Early galaxies form through dark matter and gas assembly, evolving into dynamically hot, chaotic structures driven by mergers and feedback. By contrast, remarkably smooth, rotating disks are observed in massive galaxies only 1.4 billion years after the Big Bang, implying rapid dynamical evolution. Probing this evolution mechanism necessitates studies of young galaxies, yet efforts have been hindered by observational limitations in both sensitivity and spatial resolution. Here we report high-resolution observations of a strongly lensed, quintuply imaged, low-luminosity young galaxy at redshift <i>z</i> = 6.072, just 930 million years after the Big Bang. Magnified by gravitational lensing, the galaxy resolves into at least 15 star-forming clumps (effective radii ~10–60 pc), dominating ~70% of the galaxy’s ultraviolet flux. Cool gas emission reveals an underlying rotating disk (rotational-to-random motion ratio 3.58 ± 0.74) in a gravitationally unstable state (Toomre <i>Q</i> ≈ 0.2–0.3) with high surface gas densities comparable to local starbursts (~10<sup>3−5</sup> <i>M</i><sub><span>⊙</span></sub> pc<sup>−2</sup>). These properties suggest that disk instabilities with weak feedback drive prolific clump formation. The extreme clumpiness surpasses galaxies at later epochs and current simulation predictions. Our findings directly connect small-scale internal structures, underlying disk dynamics along with feedback effects at cosmic dawn, potentially explaining the abundance of luminous galaxies observed in the early Universe.</p>\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-025-02592-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02592-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn
Early galaxies form through dark matter and gas assembly, evolving into dynamically hot, chaotic structures driven by mergers and feedback. By contrast, remarkably smooth, rotating disks are observed in massive galaxies only 1.4 billion years after the Big Bang, implying rapid dynamical evolution. Probing this evolution mechanism necessitates studies of young galaxies, yet efforts have been hindered by observational limitations in both sensitivity and spatial resolution. Here we report high-resolution observations of a strongly lensed, quintuply imaged, low-luminosity young galaxy at redshift z = 6.072, just 930 million years after the Big Bang. Magnified by gravitational lensing, the galaxy resolves into at least 15 star-forming clumps (effective radii ~10–60 pc), dominating ~70% of the galaxy’s ultraviolet flux. Cool gas emission reveals an underlying rotating disk (rotational-to-random motion ratio 3.58 ± 0.74) in a gravitationally unstable state (Toomre Q ≈ 0.2–0.3) with high surface gas densities comparable to local starbursts (~103−5M⊙ pc−2). These properties suggest that disk instabilities with weak feedback drive prolific clump formation. The extreme clumpiness surpasses galaxies at later epochs and current simulation predictions. Our findings directly connect small-scale internal structures, underlying disk dynamics along with feedback effects at cosmic dawn, potentially explaining the abundance of luminous galaxies observed in the early Universe.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.