Edgar Bernardo, Matías Gonzalo De Vas, Diego Balboa, Mirabai Cuenca-Ardura, Sílvia Bonàs-Guarch, Mercè Planas-Fèlix, Fanny Mollandin, Miquel Torrens-Dinarès, Miguel Angel Maestro, Javier García-Hurtado, Sonia Moratinos, Philippe Ravassard, Haiqiang Dou, Holger Heyn, Alexander van Oudenaarden, Nathalie Groen, Eelco de Koning, Christian Conrad, Roland Eils, Santiago Vernia, Jorge Ferrer
{"title":"HNF1A和A1CF协调β细胞转录剪接轴,该轴在2型糖尿病中被破坏","authors":"Edgar Bernardo, Matías Gonzalo De Vas, Diego Balboa, Mirabai Cuenca-Ardura, Sílvia Bonàs-Guarch, Mercè Planas-Fèlix, Fanny Mollandin, Miquel Torrens-Dinarès, Miguel Angel Maestro, Javier García-Hurtado, Sonia Moratinos, Philippe Ravassard, Haiqiang Dou, Holger Heyn, Alexander van Oudenaarden, Nathalie Groen, Eelco de Koning, Christian Conrad, Roland Eils, Santiago Vernia, Jorge Ferrer","doi":"10.1016/j.cmet.2025.07.007","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes (T2D) is a devastating chronic disease marked by pancreatic β cell dysfunction and insulin resistance, whose pathophysiology remains poorly understood. <em>HNF1A</em>, which encodes transcription factor hepatocyte nuclear factor-1 alpha, is the most commonly mutated gene in Mendelian diabetes. <em>HNF1A</em> also carries loss- or gain-of-function coding variants that respectively predispose to or protect against polygenic T2D. The mechanisms underlying HNF1A-deficient diabetes, however, are still unclear. We now demonstrate that diabetes arises from β cell-autonomous defects and identify direct β cell genomic targets of HNF1A. This uncovered a regulatory axis where HNF1A controls transcription of <em>A1CF</em>, which orchestrates an RNA splicing program encompassing genes that regulate β cell function. This <em>HNF1A</em>-<em>A1CF</em> transcription-splicing axis is suppressed in β cells from T2D individuals, while genetic variants reducing pancreatic islet <em>A1CF</em> are associated with increased glycemia and T2D susceptibility. Our findings, therefore, identify a linear hierarchy that coordinates β cell-specific transcription and splicing programs and link this pathway to T2D pathogenesis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":30.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HNF1A and A1CF coordinate a beta cell transcription-splicing axis that is disrupted in type 2 diabetes\",\"authors\":\"Edgar Bernardo, Matías Gonzalo De Vas, Diego Balboa, Mirabai Cuenca-Ardura, Sílvia Bonàs-Guarch, Mercè Planas-Fèlix, Fanny Mollandin, Miquel Torrens-Dinarès, Miguel Angel Maestro, Javier García-Hurtado, Sonia Moratinos, Philippe Ravassard, Haiqiang Dou, Holger Heyn, Alexander van Oudenaarden, Nathalie Groen, Eelco de Koning, Christian Conrad, Roland Eils, Santiago Vernia, Jorge Ferrer\",\"doi\":\"10.1016/j.cmet.2025.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 2 diabetes (T2D) is a devastating chronic disease marked by pancreatic β cell dysfunction and insulin resistance, whose pathophysiology remains poorly understood. <em>HNF1A</em>, which encodes transcription factor hepatocyte nuclear factor-1 alpha, is the most commonly mutated gene in Mendelian diabetes. <em>HNF1A</em> also carries loss- or gain-of-function coding variants that respectively predispose to or protect against polygenic T2D. The mechanisms underlying HNF1A-deficient diabetes, however, are still unclear. We now demonstrate that diabetes arises from β cell-autonomous defects and identify direct β cell genomic targets of HNF1A. This uncovered a regulatory axis where HNF1A controls transcription of <em>A1CF</em>, which orchestrates an RNA splicing program encompassing genes that regulate β cell function. This <em>HNF1A</em>-<em>A1CF</em> transcription-splicing axis is suppressed in β cells from T2D individuals, while genetic variants reducing pancreatic islet <em>A1CF</em> are associated with increased glycemia and T2D susceptibility. Our findings, therefore, identify a linear hierarchy that coordinates β cell-specific transcription and splicing programs and link this pathway to T2D pathogenesis.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":30.9000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2025.07.007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.07.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
HNF1A and A1CF coordinate a beta cell transcription-splicing axis that is disrupted in type 2 diabetes
Type 2 diabetes (T2D) is a devastating chronic disease marked by pancreatic β cell dysfunction and insulin resistance, whose pathophysiology remains poorly understood. HNF1A, which encodes transcription factor hepatocyte nuclear factor-1 alpha, is the most commonly mutated gene in Mendelian diabetes. HNF1A also carries loss- or gain-of-function coding variants that respectively predispose to or protect against polygenic T2D. The mechanisms underlying HNF1A-deficient diabetes, however, are still unclear. We now demonstrate that diabetes arises from β cell-autonomous defects and identify direct β cell genomic targets of HNF1A. This uncovered a regulatory axis where HNF1A controls transcription of A1CF, which orchestrates an RNA splicing program encompassing genes that regulate β cell function. This HNF1A-A1CF transcription-splicing axis is suppressed in β cells from T2D individuals, while genetic variants reducing pancreatic islet A1CF are associated with increased glycemia and T2D susceptibility. Our findings, therefore, identify a linear hierarchy that coordinates β cell-specific transcription and splicing programs and link this pathway to T2D pathogenesis.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.