空位缺陷辅助下无金属二维正交氮化硼的强化固氮:来自非绝热分子动力学模拟的见解。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Subhash Kumar, Atish Ghosh, Biplab Goswami and Pranab Sarkar*, 
{"title":"空位缺陷辅助下无金属二维正交氮化硼的强化固氮:来自非绝热分子动力学模拟的见解。","authors":"Subhash Kumar,&nbsp;Atish Ghosh,&nbsp;Biplab Goswami and Pranab Sarkar*,&nbsp;","doi":"10.1021/acs.jpclett.5c02032","DOIUrl":null,"url":null,"abstract":"<p >The photocatalytic nitrogen reduction reaction (NRR) is a promising approach for green and sustainable ammonia (NH<sub>3</sub>) production under ambient conditions. However, the design of highly efficient photocatalysts remains a significant challenge owing to the inertness of N<sub>2</sub> molecules, complex reaction kinetics, and substantial energy barriers. In this work, we investigate the catalytic mechanism and real-time photocarrier dynamics of NRR on pristine and defect-engineered orthorhombic boron nitride (o-B<sub>2</sub>N<sub>2</sub>), a metal-free and environmentally friendly 2D semiconductor. Using density functional theory (DFT) and time-dependent ab initio nonadiabatic molecular dynamics (NAMD) simulations, we systematically studied the electronic structure, optical absorption, free-energy profile, and dynamics of charge carrier recombination of both pristine and vacancy-defective o-B<sub>2</sub>N<sub>2</sub>. Our results demonstrate that the introduction of a double vacancy (DV-BN) into o-B<sub>2</sub>N<sub>2</sub> significantly widens the band gap, prolongs the electron–hole recombination time from 2.18 ns (pristine) to 3.15 ns, and markedly improves the photocatalytic activity toward NRR. These findings demonstrate the potential of o-B<sub>2</sub>N<sub>2</sub> as an efficient, low-cost photocatalyst for sustainable ammonia production.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 32","pages":"8311–8320"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacancy Defect-Assisted Enhanced Nitrogen Fixation in Metal-Free 2D Orthorhombic Boron Nitride: Insights from Nonadiabatic Molecular Dynamics Simulations\",\"authors\":\"Subhash Kumar,&nbsp;Atish Ghosh,&nbsp;Biplab Goswami and Pranab Sarkar*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The photocatalytic nitrogen reduction reaction (NRR) is a promising approach for green and sustainable ammonia (NH<sub>3</sub>) production under ambient conditions. However, the design of highly efficient photocatalysts remains a significant challenge owing to the inertness of N<sub>2</sub> molecules, complex reaction kinetics, and substantial energy barriers. In this work, we investigate the catalytic mechanism and real-time photocarrier dynamics of NRR on pristine and defect-engineered orthorhombic boron nitride (o-B<sub>2</sub>N<sub>2</sub>), a metal-free and environmentally friendly 2D semiconductor. Using density functional theory (DFT) and time-dependent ab initio nonadiabatic molecular dynamics (NAMD) simulations, we systematically studied the electronic structure, optical absorption, free-energy profile, and dynamics of charge carrier recombination of both pristine and vacancy-defective o-B<sub>2</sub>N<sub>2</sub>. Our results demonstrate that the introduction of a double vacancy (DV-BN) into o-B<sub>2</sub>N<sub>2</sub> significantly widens the band gap, prolongs the electron–hole recombination time from 2.18 ns (pristine) to 3.15 ns, and markedly improves the photocatalytic activity toward NRR. These findings demonstrate the potential of o-B<sub>2</sub>N<sub>2</sub> as an efficient, low-cost photocatalyst for sustainable ammonia production.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 32\",\"pages\":\"8311–8320\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02032\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02032","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化氮还原反应(NRR)是一种在环境条件下绿色可持续生产氨(NH3)的有前途的方法。然而,由于N2分子的惰性、复杂的反应动力学和大量的能垒,高效光催化剂的设计仍然是一个重大的挑战。在这项工作中,我们研究了NRR在原始和缺陷工程正交氮化硼(o-B2N2)上的催化机制和实时光载流子动力学,这是一种无金属和环保的2D半导体。利用密度泛函理论(DFT)和时间依赖从头算非绝热分子动力学(NAMD)模拟,系统地研究了原始o-B2N2和空位缺陷o-B2N2的电子结构、光学吸收、自由能分布和载流子重组动力学。结果表明,双空位(DV-BN)的引入使o-B2N2的带隙明显变宽,电子-空穴复合时间从2.18 ns(原始)延长到3.15 ns,并显著提高了对NRR的光催化活性。这些发现证明了o-B2N2作为一种高效、低成本的可持续氨生产光催化剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vacancy Defect-Assisted Enhanced Nitrogen Fixation in Metal-Free 2D Orthorhombic Boron Nitride: Insights from Nonadiabatic Molecular Dynamics Simulations

Vacancy Defect-Assisted Enhanced Nitrogen Fixation in Metal-Free 2D Orthorhombic Boron Nitride: Insights from Nonadiabatic Molecular Dynamics Simulations

The photocatalytic nitrogen reduction reaction (NRR) is a promising approach for green and sustainable ammonia (NH3) production under ambient conditions. However, the design of highly efficient photocatalysts remains a significant challenge owing to the inertness of N2 molecules, complex reaction kinetics, and substantial energy barriers. In this work, we investigate the catalytic mechanism and real-time photocarrier dynamics of NRR on pristine and defect-engineered orthorhombic boron nitride (o-B2N2), a metal-free and environmentally friendly 2D semiconductor. Using density functional theory (DFT) and time-dependent ab initio nonadiabatic molecular dynamics (NAMD) simulations, we systematically studied the electronic structure, optical absorption, free-energy profile, and dynamics of charge carrier recombination of both pristine and vacancy-defective o-B2N2. Our results demonstrate that the introduction of a double vacancy (DV-BN) into o-B2N2 significantly widens the band gap, prolongs the electron–hole recombination time from 2.18 ns (pristine) to 3.15 ns, and markedly improves the photocatalytic activity toward NRR. These findings demonstrate the potential of o-B2N2 as an efficient, low-cost photocatalyst for sustainable ammonia production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信