Safia El Jailani, Damien Cladière, Elvira Nikalayevich, Sandra A Touati, Vera Chesnokova, Shlomo Melmed, Eulalie Buffin, Katja Wassmann
{"title":"消除分离酶抑制表明卵母细胞中期缺乏强大的黏结蛋白保护。","authors":"Safia El Jailani, Damien Cladière, Elvira Nikalayevich, Sandra A Touati, Vera Chesnokova, Shlomo Melmed, Eulalie Buffin, Katja Wassmann","doi":"10.1038/s44318-025-00522-0","DOIUrl":null,"url":null,"abstract":"<p><p>The meiotic segregation pattern to generate haploid gametes is mediated by step-wise cohesion removal by separase, first from chromosome arms in meiosis I, and then from the pericentromere in meiosis II. In mammalian oocytes, separase is tightly controlled during the hours-long prometaphase and until chromosome segregation in meiosis I, activated for a short time window, and again inhibited until metaphase II arrest is lifted by fertilization. Centromeric cohesin is protected from cleavage by Sgo2-PP2A in meiosis I. It remained enigmatic how tight control of alternating separase activation and inactivation is achieved during the two divisions in oocytes, and when cohesin protection is put in place and removed. Using complementation assays in knock-out mouse models, we established the contributions of cyclin B1 and securin for separase inhibition during both divisions. When eliminating separase inhibition, we found that cohesin is not robustly protected at meiosis I resumption and during metaphase II arrest. Importantly, in meiosis II, the sole event required for cleavage of pericentromeric cohesin besides separase activation is prior kinetochore individualization in meiosis I.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"5187-5214"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eliminating separase inhibition reveals absence of robust cohesin protection in oocyte metaphase II.\",\"authors\":\"Safia El Jailani, Damien Cladière, Elvira Nikalayevich, Sandra A Touati, Vera Chesnokova, Shlomo Melmed, Eulalie Buffin, Katja Wassmann\",\"doi\":\"10.1038/s44318-025-00522-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The meiotic segregation pattern to generate haploid gametes is mediated by step-wise cohesion removal by separase, first from chromosome arms in meiosis I, and then from the pericentromere in meiosis II. In mammalian oocytes, separase is tightly controlled during the hours-long prometaphase and until chromosome segregation in meiosis I, activated for a short time window, and again inhibited until metaphase II arrest is lifted by fertilization. Centromeric cohesin is protected from cleavage by Sgo2-PP2A in meiosis I. It remained enigmatic how tight control of alternating separase activation and inactivation is achieved during the two divisions in oocytes, and when cohesin protection is put in place and removed. Using complementation assays in knock-out mouse models, we established the contributions of cyclin B1 and securin for separase inhibition during both divisions. When eliminating separase inhibition, we found that cohesin is not robustly protected at meiosis I resumption and during metaphase II arrest. Importantly, in meiosis II, the sole event required for cleavage of pericentromeric cohesin besides separase activation is prior kinetochore individualization in meiosis I.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"5187-5214\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00522-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00522-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Eliminating separase inhibition reveals absence of robust cohesin protection in oocyte metaphase II.
The meiotic segregation pattern to generate haploid gametes is mediated by step-wise cohesion removal by separase, first from chromosome arms in meiosis I, and then from the pericentromere in meiosis II. In mammalian oocytes, separase is tightly controlled during the hours-long prometaphase and until chromosome segregation in meiosis I, activated for a short time window, and again inhibited until metaphase II arrest is lifted by fertilization. Centromeric cohesin is protected from cleavage by Sgo2-PP2A in meiosis I. It remained enigmatic how tight control of alternating separase activation and inactivation is achieved during the two divisions in oocytes, and when cohesin protection is put in place and removed. Using complementation assays in knock-out mouse models, we established the contributions of cyclin B1 and securin for separase inhibition during both divisions. When eliminating separase inhibition, we found that cohesin is not robustly protected at meiosis I resumption and during metaphase II arrest. Importantly, in meiosis II, the sole event required for cleavage of pericentromeric cohesin besides separase activation is prior kinetochore individualization in meiosis I.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.