{"title":"长期收缩压变异性在预测2型糖尿病发展中的应用。","authors":"Zean Song, Yuanying Li, Young-Jae Hong, Chifa Chiang, Masaaki Matsunaga, Yupeng He, Atsuhiko Ota, Koji Tamakoshi, Hiroshi Yatsuya","doi":"10.18999/nagjms.87.2.220","DOIUrl":null,"url":null,"abstract":"<p><p>Better identification of individuals at high risk for type 2 diabetes mellitus (T2DM) requires risk-prediction models incorporating novel predictors. Accordingly, this study aimed to evaluate the merits of including long-term systolic blood pressure variability (SBPV) in predicting T2DM incidence in a Japanese cohort of 3017 participants (2446 men, 571 women; age, 36-65 years) in 2007, who were followed up until March 2019. Consecutive SBP values, recorded between 2003 and 2007, were regressed annually for each participant. The slope and root-mean-square error of the regression line were calculated for each individual to represent SBPV. The significance of SBPV was examined by adding it to a multivariate Cox model incorporating age, sex, smoking status, regular exercise, family history of diabetes, body mass index, blood levels of triglycerides, high-density lipoprotein cholesterol, and fasting blood glucose. The c-index, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to compare the performance of the prediction models without (Model 1) and with (Model 2) SBPV. During the 9.8-year follow-up period, 135 participants developed T2DM. Although a statistically significant difference in c-index between Model 1 (0.785) and Model 2 (0.786) was not found, the NRI (8.312% [<i>p</i> < 0.001]) and IDI (0.700% [<i>p</i> = 0.012]) demonstrated that the performance of Model 2 improved compared with Model 1. In conclusion, results suggested that long-term SBPV slightly improved predictive utility for T2DM when added to a conventional prediction model. The study was registered at University Hospital Medical Information Network Clinical Trial registry (UMIN000052544, https://www.umin.ac.jp/).</p>","PeriodicalId":49014,"journal":{"name":"Nagoya Journal of Medical Science","volume":"87 2","pages":"220-236"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320295/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utility of long-term systolic blood pressure variability for predicting the development of type 2 diabetes mellitus.\",\"authors\":\"Zean Song, Yuanying Li, Young-Jae Hong, Chifa Chiang, Masaaki Matsunaga, Yupeng He, Atsuhiko Ota, Koji Tamakoshi, Hiroshi Yatsuya\",\"doi\":\"10.18999/nagjms.87.2.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Better identification of individuals at high risk for type 2 diabetes mellitus (T2DM) requires risk-prediction models incorporating novel predictors. Accordingly, this study aimed to evaluate the merits of including long-term systolic blood pressure variability (SBPV) in predicting T2DM incidence in a Japanese cohort of 3017 participants (2446 men, 571 women; age, 36-65 years) in 2007, who were followed up until March 2019. Consecutive SBP values, recorded between 2003 and 2007, were regressed annually for each participant. The slope and root-mean-square error of the regression line were calculated for each individual to represent SBPV. The significance of SBPV was examined by adding it to a multivariate Cox model incorporating age, sex, smoking status, regular exercise, family history of diabetes, body mass index, blood levels of triglycerides, high-density lipoprotein cholesterol, and fasting blood glucose. The c-index, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to compare the performance of the prediction models without (Model 1) and with (Model 2) SBPV. During the 9.8-year follow-up period, 135 participants developed T2DM. Although a statistically significant difference in c-index between Model 1 (0.785) and Model 2 (0.786) was not found, the NRI (8.312% [<i>p</i> < 0.001]) and IDI (0.700% [<i>p</i> = 0.012]) demonstrated that the performance of Model 2 improved compared with Model 1. In conclusion, results suggested that long-term SBPV slightly improved predictive utility for T2DM when added to a conventional prediction model. The study was registered at University Hospital Medical Information Network Clinical Trial registry (UMIN000052544, https://www.umin.ac.jp/).</p>\",\"PeriodicalId\":49014,\"journal\":{\"name\":\"Nagoya Journal of Medical Science\",\"volume\":\"87 2\",\"pages\":\"220-236\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320295/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Journal of Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.18999/nagjms.87.2.220\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Journal of Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18999/nagjms.87.2.220","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Utility of long-term systolic blood pressure variability for predicting the development of type 2 diabetes mellitus.
Better identification of individuals at high risk for type 2 diabetes mellitus (T2DM) requires risk-prediction models incorporating novel predictors. Accordingly, this study aimed to evaluate the merits of including long-term systolic blood pressure variability (SBPV) in predicting T2DM incidence in a Japanese cohort of 3017 participants (2446 men, 571 women; age, 36-65 years) in 2007, who were followed up until March 2019. Consecutive SBP values, recorded between 2003 and 2007, were regressed annually for each participant. The slope and root-mean-square error of the regression line were calculated for each individual to represent SBPV. The significance of SBPV was examined by adding it to a multivariate Cox model incorporating age, sex, smoking status, regular exercise, family history of diabetes, body mass index, blood levels of triglycerides, high-density lipoprotein cholesterol, and fasting blood glucose. The c-index, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to compare the performance of the prediction models without (Model 1) and with (Model 2) SBPV. During the 9.8-year follow-up period, 135 participants developed T2DM. Although a statistically significant difference in c-index between Model 1 (0.785) and Model 2 (0.786) was not found, the NRI (8.312% [p < 0.001]) and IDI (0.700% [p = 0.012]) demonstrated that the performance of Model 2 improved compared with Model 1. In conclusion, results suggested that long-term SBPV slightly improved predictive utility for T2DM when added to a conventional prediction model. The study was registered at University Hospital Medical Information Network Clinical Trial registry (UMIN000052544, https://www.umin.ac.jp/).
期刊介绍:
The Journal publishes original papers in the areas of medical science and its related fields. Reviews, symposium reports, short communications, notes, case reports, hypothesis papers, medical image at a glance, video and announcements are also accepted.
Manuscripts should be in English. It is recommended that an English check of the manuscript by a competent and knowledgeable native speaker be completed before submission.