Ning Zhang, Yajun Li, Zhenzhen Jiang, Hanghai Zhou, Ming Zhou, Ruichang Zhang, Xing Ren, Chunfang Zhang, Xuefeng Wei
{"title":"高效柴油降解菌群的构建及其在含油废水生物修复中的应用。","authors":"Ning Zhang, Yajun Li, Zhenzhen Jiang, Hanghai Zhou, Ming Zhou, Ruichang Zhang, Xing Ren, Chunfang Zhang, Xuefeng Wei","doi":"10.1007/s11274-025-04520-6","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of oil-contaminated wastewater represents a significant environmental challenge. In this study, five highly efficient diesel-degrading bacterial strains were successfully isolated from oily wastewater, which was designated as Pseudomonas sp. ZC1, Vibrio sp. ZL2, Acinetobacter sp. ZY3, Citrobacter sp. GO5, and Enterobacter cloacae GM6. To construct an efficient bacterial consortium based on these five strains, the optimized strain combination of 26 different consortia composed of two, three, four, and five bacterial strains was conducted. The results suggested that a consortium comprising three strains (ZL2, ZY3, and GM6) showed the highest diesel degradation efficiency of 89.66% on day 3, while other strain combinations exhibited lower degradation rates and tended to require more time to achieve comparable efficiency. The orthogonal experiments further determined the optimal inoculation ratios of 1.0%, 0.5%, and 1.5% for strains ZL2, ZY3, and GM6 improved diesel degradation efficiency to 93.65% by day 3. The application of this consortium in the oily wastewater bioremediation confirmed its degrading capacity for n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs). This study highlights the excellent performance of the engineered bacterial consortium in the bioremediation of petroleum-contaminated wastewater, demonstrating its potential for scaling up to pilot and full-scale applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 8","pages":"299"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and application of an efficient diesel degrading bacterial consortium for oily wastewater bioremediation.\",\"authors\":\"Ning Zhang, Yajun Li, Zhenzhen Jiang, Hanghai Zhou, Ming Zhou, Ruichang Zhang, Xing Ren, Chunfang Zhang, Xuefeng Wei\",\"doi\":\"10.1007/s11274-025-04520-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The treatment of oil-contaminated wastewater represents a significant environmental challenge. In this study, five highly efficient diesel-degrading bacterial strains were successfully isolated from oily wastewater, which was designated as Pseudomonas sp. ZC1, Vibrio sp. ZL2, Acinetobacter sp. ZY3, Citrobacter sp. GO5, and Enterobacter cloacae GM6. To construct an efficient bacterial consortium based on these five strains, the optimized strain combination of 26 different consortia composed of two, three, four, and five bacterial strains was conducted. The results suggested that a consortium comprising three strains (ZL2, ZY3, and GM6) showed the highest diesel degradation efficiency of 89.66% on day 3, while other strain combinations exhibited lower degradation rates and tended to require more time to achieve comparable efficiency. The orthogonal experiments further determined the optimal inoculation ratios of 1.0%, 0.5%, and 1.5% for strains ZL2, ZY3, and GM6 improved diesel degradation efficiency to 93.65% by day 3. The application of this consortium in the oily wastewater bioremediation confirmed its degrading capacity for n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs). This study highlights the excellent performance of the engineered bacterial consortium in the bioremediation of petroleum-contaminated wastewater, demonstrating its potential for scaling up to pilot and full-scale applications.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 8\",\"pages\":\"299\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-025-04520-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04520-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Construction and application of an efficient diesel degrading bacterial consortium for oily wastewater bioremediation.
The treatment of oil-contaminated wastewater represents a significant environmental challenge. In this study, five highly efficient diesel-degrading bacterial strains were successfully isolated from oily wastewater, which was designated as Pseudomonas sp. ZC1, Vibrio sp. ZL2, Acinetobacter sp. ZY3, Citrobacter sp. GO5, and Enterobacter cloacae GM6. To construct an efficient bacterial consortium based on these five strains, the optimized strain combination of 26 different consortia composed of two, three, four, and five bacterial strains was conducted. The results suggested that a consortium comprising three strains (ZL2, ZY3, and GM6) showed the highest diesel degradation efficiency of 89.66% on day 3, while other strain combinations exhibited lower degradation rates and tended to require more time to achieve comparable efficiency. The orthogonal experiments further determined the optimal inoculation ratios of 1.0%, 0.5%, and 1.5% for strains ZL2, ZY3, and GM6 improved diesel degradation efficiency to 93.65% by day 3. The application of this consortium in the oily wastewater bioremediation confirmed its degrading capacity for n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs). This study highlights the excellent performance of the engineered bacterial consortium in the bioremediation of petroleum-contaminated wastewater, demonstrating its potential for scaling up to pilot and full-scale applications.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.