高效柴油降解菌群的构建及其在含油废水生物修复中的应用。

IF 4.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ning Zhang, Yajun Li, Zhenzhen Jiang, Hanghai Zhou, Ming Zhou, Ruichang Zhang, Xing Ren, Chunfang Zhang, Xuefeng Wei
{"title":"高效柴油降解菌群的构建及其在含油废水生物修复中的应用。","authors":"Ning Zhang, Yajun Li, Zhenzhen Jiang, Hanghai Zhou, Ming Zhou, Ruichang Zhang, Xing Ren, Chunfang Zhang, Xuefeng Wei","doi":"10.1007/s11274-025-04520-6","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of oil-contaminated wastewater represents a significant environmental challenge. In this study, five highly efficient diesel-degrading bacterial strains were successfully isolated from oily wastewater, which was designated as Pseudomonas sp. ZC1, Vibrio sp. ZL2, Acinetobacter sp. ZY3, Citrobacter sp. GO5, and Enterobacter cloacae GM6. To construct an efficient bacterial consortium based on these five strains, the optimized strain combination of 26 different consortia composed of two, three, four, and five bacterial strains was conducted. The results suggested that a consortium comprising three strains (ZL2, ZY3, and GM6) showed the highest diesel degradation efficiency of 89.66% on day 3, while other strain combinations exhibited lower degradation rates and tended to require more time to achieve comparable efficiency. The orthogonal experiments further determined the optimal inoculation ratios of 1.0%, 0.5%, and 1.5% for strains ZL2, ZY3, and GM6 improved diesel degradation efficiency to 93.65% by day 3. The application of this consortium in the oily wastewater bioremediation confirmed its degrading capacity for n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs). This study highlights the excellent performance of the engineered bacterial consortium in the bioremediation of petroleum-contaminated wastewater, demonstrating its potential for scaling up to pilot and full-scale applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 8","pages":"299"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and application of an efficient diesel degrading bacterial consortium for oily wastewater bioremediation.\",\"authors\":\"Ning Zhang, Yajun Li, Zhenzhen Jiang, Hanghai Zhou, Ming Zhou, Ruichang Zhang, Xing Ren, Chunfang Zhang, Xuefeng Wei\",\"doi\":\"10.1007/s11274-025-04520-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The treatment of oil-contaminated wastewater represents a significant environmental challenge. In this study, five highly efficient diesel-degrading bacterial strains were successfully isolated from oily wastewater, which was designated as Pseudomonas sp. ZC1, Vibrio sp. ZL2, Acinetobacter sp. ZY3, Citrobacter sp. GO5, and Enterobacter cloacae GM6. To construct an efficient bacterial consortium based on these five strains, the optimized strain combination of 26 different consortia composed of two, three, four, and five bacterial strains was conducted. The results suggested that a consortium comprising three strains (ZL2, ZY3, and GM6) showed the highest diesel degradation efficiency of 89.66% on day 3, while other strain combinations exhibited lower degradation rates and tended to require more time to achieve comparable efficiency. The orthogonal experiments further determined the optimal inoculation ratios of 1.0%, 0.5%, and 1.5% for strains ZL2, ZY3, and GM6 improved diesel degradation efficiency to 93.65% by day 3. The application of this consortium in the oily wastewater bioremediation confirmed its degrading capacity for n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs). This study highlights the excellent performance of the engineered bacterial consortium in the bioremediation of petroleum-contaminated wastewater, demonstrating its potential for scaling up to pilot and full-scale applications.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 8\",\"pages\":\"299\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-025-04520-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04520-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

石油污染废水的处理是一项重大的环境挑战。本研究从含油废水中成功分离出5株高效柴油降解菌,分别为Pseudomonas sp. ZC1、Vibrio sp. ZL2、Acinetobacter sp. ZY3、Citrobacter sp. GO5和Enterobacter cloacae GM6。为构建高效菌群,对由2、3、4、5菌株组成的26个不同菌群进行优化菌群组合。结果表明,由ZL2、ZY3和GM6组成的菌株组合在第3天的柴油降解效率最高,达到89.66%,而其他菌株组合的降解率较低,并且需要更长的时间才能达到相同的效率。通过正交试验进一步确定菌株ZL2、ZY3和GM6的最佳接种比例为1.0%、0.5%和1.5%,第3天柴油降解率达到93.65%。该联合体在含油废水生物处理中的应用证实了其对正构烷烃(C8-C40)和多环芳烃(PAHs)的降解能力。本研究强调了工程细菌联合体在石油污染废水生物修复中的优异表现,展示了其扩大试点和全面应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and application of an efficient diesel degrading bacterial consortium for oily wastewater bioremediation.

The treatment of oil-contaminated wastewater represents a significant environmental challenge. In this study, five highly efficient diesel-degrading bacterial strains were successfully isolated from oily wastewater, which was designated as Pseudomonas sp. ZC1, Vibrio sp. ZL2, Acinetobacter sp. ZY3, Citrobacter sp. GO5, and Enterobacter cloacae GM6. To construct an efficient bacterial consortium based on these five strains, the optimized strain combination of 26 different consortia composed of two, three, four, and five bacterial strains was conducted. The results suggested that a consortium comprising three strains (ZL2, ZY3, and GM6) showed the highest diesel degradation efficiency of 89.66% on day 3, while other strain combinations exhibited lower degradation rates and tended to require more time to achieve comparable efficiency. The orthogonal experiments further determined the optimal inoculation ratios of 1.0%, 0.5%, and 1.5% for strains ZL2, ZY3, and GM6 improved diesel degradation efficiency to 93.65% by day 3. The application of this consortium in the oily wastewater bioremediation confirmed its degrading capacity for n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs). This study highlights the excellent performance of the engineered bacterial consortium in the bioremediation of petroleum-contaminated wastewater, demonstrating its potential for scaling up to pilot and full-scale applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信