基于深度学习的齿状核定量敏感性成像自动分割。

IF 13.2 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Diogo H Shiraishi, Susmita Saha, Isaac M Adanyeguh, Sirio Cocozza, Louise A Corben, Andreas Deistung, Martin B Delatycki, Imis Dogan, William Gaetz, Nellie Georgiou-Karistianis, Simon Graf, Marina Grisoli, Pierre-Gilles Henry, Gustavo M Jarola, James M Joers, Christian Langkammer, Christophe Lenglet, Jiakun Li, Camila C Lobo, Eric F Lock, David R Lynch, Thomas H Mareci, Alberto R M Martinez, Serena Monti, Anna Nigri, Massimo Pandolfo, Kathrin Reetz, Timothy P Roberts, Sandro Romanzetti, David A Rudko, Alessandra Scaravilli, Jörg B Schulz, S H Subramony, Dagmar Timmann, Marcondes C França, Ian H Harding, Thiago J R Rezende
{"title":"基于深度学习的齿状核定量敏感性成像自动分割。","authors":"Diogo H Shiraishi, Susmita Saha, Isaac M Adanyeguh, Sirio Cocozza, Louise A Corben, Andreas Deistung, Martin B Delatycki, Imis Dogan, William Gaetz, Nellie Georgiou-Karistianis, Simon Graf, Marina Grisoli, Pierre-Gilles Henry, Gustavo M Jarola, James M Joers, Christian Langkammer, Christophe Lenglet, Jiakun Li, Camila C Lobo, Eric F Lock, David R Lynch, Thomas H Mareci, Alberto R M Martinez, Serena Monti, Anna Nigri, Massimo Pandolfo, Kathrin Reetz, Timothy P Roberts, Sandro Romanzetti, David A Rudko, Alessandra Scaravilli, Jörg B Schulz, S H Subramony, Dagmar Timmann, Marcondes C França, Ian H Harding, Thiago J R Rezende","doi":"10.1148/ryai.240478","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) applied to brain MRI-based quantitative susceptibility mapping (QSM) images. Materials and Methods Brain QSM images from healthy controls and individuals with cerebellar ataxia or multiple sclerosis were collected from nine different datasets (2016-2023) worldwide for this retrospective study (ClinicalTrials.gov Identifier: NCT04349514). Manual delineation of the DN was performed by experienced raters. Automated segmentation performance was evaluated against manual reference segmentations following training with several DL architectures. A two-step approach was used, consisting of a localization model followed by DN segmentation. Performance metrics included intraclass correlation coefficient (ICC), Dice score, and Pearson correlation coefficient. Results The training and testing datasets comprised 328 individuals (age range, 11-64 years; 171 female), including 141 healthy individuals and 187 with cerebellar ataxia or multiple sclerosis. The manual tracing protocol produced reference standards with high intrarater (average ICC 0.91) and interrater reliability (average ICC 0.78). Initial DL architecture exploration indicated that the nnU-Net framework performed best. The two-step localization plus segmentation pipeline achieved a Dice score of 0.90 ± 0.03 and 0.89 ± 0.04 for left and right DN segmentation, respectively. In external testing, the proposed algorithm outperformed the current leading automated tool (mean Dice scores for left and right DN: 0.86 ± 0.04 vs 0.57 ± 0.22, <i>P</i> < .001; 0.84 ± 0.07 vs 0.58 ± 0.24, <i>P</i> < .001). The model demonstrated generalizability across datasets unseen during the training step, with automated segmentations showing high correlation with manual annotations (left DN: r = 0.74; <i>P</i> < .001; right DN: r = 0.48; <i>P</i> = .03). Conclusion The proposed model accurately and efficiently segmented the DN from brain QSM images. The model is publicly available (https://github.com/art2mri/DentateSeg). ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240478"},"PeriodicalIF":13.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Deep Learning-based Segmentation of the Dentate Nucleus Using Quantitative Susceptibility Mapping MRI.\",\"authors\":\"Diogo H Shiraishi, Susmita Saha, Isaac M Adanyeguh, Sirio Cocozza, Louise A Corben, Andreas Deistung, Martin B Delatycki, Imis Dogan, William Gaetz, Nellie Georgiou-Karistianis, Simon Graf, Marina Grisoli, Pierre-Gilles Henry, Gustavo M Jarola, James M Joers, Christian Langkammer, Christophe Lenglet, Jiakun Li, Camila C Lobo, Eric F Lock, David R Lynch, Thomas H Mareci, Alberto R M Martinez, Serena Monti, Anna Nigri, Massimo Pandolfo, Kathrin Reetz, Timothy P Roberts, Sandro Romanzetti, David A Rudko, Alessandra Scaravilli, Jörg B Schulz, S H Subramony, Dagmar Timmann, Marcondes C França, Ian H Harding, Thiago J R Rezende\",\"doi\":\"10.1148/ryai.240478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) applied to brain MRI-based quantitative susceptibility mapping (QSM) images. Materials and Methods Brain QSM images from healthy controls and individuals with cerebellar ataxia or multiple sclerosis were collected from nine different datasets (2016-2023) worldwide for this retrospective study (ClinicalTrials.gov Identifier: NCT04349514). Manual delineation of the DN was performed by experienced raters. Automated segmentation performance was evaluated against manual reference segmentations following training with several DL architectures. A two-step approach was used, consisting of a localization model followed by DN segmentation. Performance metrics included intraclass correlation coefficient (ICC), Dice score, and Pearson correlation coefficient. Results The training and testing datasets comprised 328 individuals (age range, 11-64 years; 171 female), including 141 healthy individuals and 187 with cerebellar ataxia or multiple sclerosis. The manual tracing protocol produced reference standards with high intrarater (average ICC 0.91) and interrater reliability (average ICC 0.78). Initial DL architecture exploration indicated that the nnU-Net framework performed best. The two-step localization plus segmentation pipeline achieved a Dice score of 0.90 ± 0.03 and 0.89 ± 0.04 for left and right DN segmentation, respectively. In external testing, the proposed algorithm outperformed the current leading automated tool (mean Dice scores for left and right DN: 0.86 ± 0.04 vs 0.57 ± 0.22, <i>P</i> < .001; 0.84 ± 0.07 vs 0.58 ± 0.24, <i>P</i> < .001). The model demonstrated generalizability across datasets unseen during the training step, with automated segmentations showing high correlation with manual annotations (left DN: r = 0.74; <i>P</i> < .001; right DN: r = 0.48; <i>P</i> = .03). Conclusion The proposed model accurately and efficiently segmented the DN from brain QSM images. The model is publicly available (https://github.com/art2mri/DentateSeg). ©RSNA, 2025.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e240478\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.240478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

“刚刚接受”的论文经过了全面的同行评审,并已被接受发表在《放射学:人工智能》杂志上。这篇文章将经过编辑,布局和校样审查,然后在其最终版本出版。请注意,在最终编辑文章的制作过程中,可能会发现可能影响内容的错误。目的开发一种基于深度学习(DL)的齿状核(DN)分割工具,应用于基于mri的定量敏感性图谱(QSM)图像。材料和方法本回顾性研究从全球9个不同的数据集(2016-2023)中收集健康对照组和小脑性失调或多发性硬化症患者的脑QSM图像(ClinicalTrials.gov标识符:NCT04349514)。由经验丰富的评分员手动划定DN。在使用几种深度学习架构进行训练后,对自动分割性能与手动参考分割进行了评估。采用两步方法,包括定位模型和DN分割。性能指标包括类内相关系数(ICC)、Dice评分和Pearson相关系数。结果训练和测试数据集共328人,年龄11 ~ 64岁;171名女性),包括141名健康个体和187名患有小脑性共济失调或多发性硬化症的个体。手工跟踪协议产生了具有高内部(平均ICC 0.91)和内部可靠性(平均ICC 0.78)的参考标准。初步的深度学习架构探索表明,nnU-Net框架表现最好。两步定位加分割流水线的左DN和右DN分割的Dice得分分别为0.90±0.03和0.89±0.04。在外部测试中,该算法优于目前领先的自动化工具(左DN和右DN的平均Dice得分:0.86±0.04 vs 0.57±0.22,P < 0.001;0.84±0.07 vs 0.58±0.24,P < 0.001)。该模型展示了在训练阶段未见的数据集之间的泛化性,自动分割显示出与手动注释的高相关性(左DN: r = 0.74;P < .001;右DN: r = 0.48;P = .03)。结论该模型能准确、高效地分割脑QSM图像中的DN。该模型是公开的(https://github.com/art2mri/DentateSeg)。©RSNA, 2025年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Deep Learning-based Segmentation of the Dentate Nucleus Using Quantitative Susceptibility Mapping MRI.

Purpose To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) applied to brain MRI-based quantitative susceptibility mapping (QSM) images. Materials and Methods Brain QSM images from healthy controls and individuals with cerebellar ataxia or multiple sclerosis were collected from nine different datasets (2016-2023) worldwide for this retrospective study (ClinicalTrials.gov Identifier: NCT04349514). Manual delineation of the DN was performed by experienced raters. Automated segmentation performance was evaluated against manual reference segmentations following training with several DL architectures. A two-step approach was used, consisting of a localization model followed by DN segmentation. Performance metrics included intraclass correlation coefficient (ICC), Dice score, and Pearson correlation coefficient. Results The training and testing datasets comprised 328 individuals (age range, 11-64 years; 171 female), including 141 healthy individuals and 187 with cerebellar ataxia or multiple sclerosis. The manual tracing protocol produced reference standards with high intrarater (average ICC 0.91) and interrater reliability (average ICC 0.78). Initial DL architecture exploration indicated that the nnU-Net framework performed best. The two-step localization plus segmentation pipeline achieved a Dice score of 0.90 ± 0.03 and 0.89 ± 0.04 for left and right DN segmentation, respectively. In external testing, the proposed algorithm outperformed the current leading automated tool (mean Dice scores for left and right DN: 0.86 ± 0.04 vs 0.57 ± 0.22, P < .001; 0.84 ± 0.07 vs 0.58 ± 0.24, P < .001). The model demonstrated generalizability across datasets unseen during the training step, with automated segmentations showing high correlation with manual annotations (left DN: r = 0.74; P < .001; right DN: r = 0.48; P = .03). Conclusion The proposed model accurately and efficiently segmented the DN from brain QSM images. The model is publicly available (https://github.com/art2mri/DentateSeg). ©RSNA, 2025.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信