SmartImpute是一个针对单细胞转录组数据的目标输入框架。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-08-18 Epub Date: 2025-08-04 DOI:10.1016/j.crmeth.2025.101122
Sijie Yao, Tingyi Li, Joshua T Davis, Timothy I Shaw, Xiaoqing Yu, Xuefeng Wang
{"title":"SmartImpute是一个针对单细胞转录组数据的目标输入框架。","authors":"Sijie Yao, Tingyi Li, Joshua T Davis, Timothy I Shaw, Xiaoqing Yu, Xuefeng Wang","doi":"10.1016/j.crmeth.2025.101122","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present SmartImpute, a targeted imputation framework for single-cell RNA sequencing (scRNA-seq) data. SmartImpute focuses on predefined marker genes to improve biological relevance and computational efficiency. It employs a modified generative adversarial imputation network (GAIN) with a multi-task discriminator that imputes missing values while preserving true biological zeros. We applied SmartImpute to scRNA-seq datasets from head and neck squamous cell carcinoma, human bone marrow, and lung cancer. Across these datasets, SmartImpute improved clustering, cell type annotation, and trajectory inference and successfully scaled to datasets with over one million cells. In addition, SmartImpute was applied to spatial transcriptomics data, where it improved spatial gene expression patterns and clustering. These results demonstrate that SmartImpute facilitates deeper insights into cellular heterogeneity and disease progression.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101122"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461658/pdf/","citationCount":"0","resultStr":"{\"title\":\"SmartImpute is a targeted imputation framework for single-cell transcriptome data.\",\"authors\":\"Sijie Yao, Tingyi Li, Joshua T Davis, Timothy I Shaw, Xiaoqing Yu, Xuefeng Wang\",\"doi\":\"10.1016/j.crmeth.2025.101122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we present SmartImpute, a targeted imputation framework for single-cell RNA sequencing (scRNA-seq) data. SmartImpute focuses on predefined marker genes to improve biological relevance and computational efficiency. It employs a modified generative adversarial imputation network (GAIN) with a multi-task discriminator that imputes missing values while preserving true biological zeros. We applied SmartImpute to scRNA-seq datasets from head and neck squamous cell carcinoma, human bone marrow, and lung cancer. Across these datasets, SmartImpute improved clustering, cell type annotation, and trajectory inference and successfully scaled to datasets with over one million cells. In addition, SmartImpute was applied to spatial transcriptomics data, where it improved spatial gene expression patterns and clustering. These results demonstrate that SmartImpute facilitates deeper insights into cellular heterogeneity and disease progression.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101122\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了SmartImpute,一个用于单细胞RNA测序(scRNA-seq)数据的靶向植入框架。SmartImpute专注于预定义的标记基因,以提高生物学相关性和计算效率。它采用了一种改进的生成对抗输入网络(GAIN),带有一个多任务鉴别器,可以输入缺失值,同时保留真实的生物零。我们将SmartImpute应用于头颈部鳞状细胞癌、人骨髓和肺癌的scRNA-seq数据集。在这些数据集上,SmartImpute改进了聚类、细胞类型注释和轨迹推断,并成功扩展到超过100万个细胞的数据集。此外,将SmartImpute应用于空间转录组学数据,改善了空间基因表达模式和聚类。这些结果表明,SmartImpute有助于更深入地了解细胞异质性和疾病进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SmartImpute is a targeted imputation framework for single-cell transcriptome data.

In this study, we present SmartImpute, a targeted imputation framework for single-cell RNA sequencing (scRNA-seq) data. SmartImpute focuses on predefined marker genes to improve biological relevance and computational efficiency. It employs a modified generative adversarial imputation network (GAIN) with a multi-task discriminator that imputes missing values while preserving true biological zeros. We applied SmartImpute to scRNA-seq datasets from head and neck squamous cell carcinoma, human bone marrow, and lung cancer. Across these datasets, SmartImpute improved clustering, cell type annotation, and trajectory inference and successfully scaled to datasets with over one million cells. In addition, SmartImpute was applied to spatial transcriptomics data, where it improved spatial gene expression patterns and clustering. These results demonstrate that SmartImpute facilitates deeper insights into cellular heterogeneity and disease progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信