{"title":"利用脑电图数据研究室内温度对装配式建筑工人生产力的实际影响。","authors":"Hao Bai, Yian Lu, Xinying Cao, Shulong Zhuo","doi":"10.1038/s41598-025-12024-4","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehending the optimal indoor temperature to augment the productivity and cognitive well-being of prefabricated construction workers (PCWs) is essential for enhancing efficiency and safety in construction. Twenty-four workers participated in experiments conducted at indoor temperatures of 24℃, 27℃, 30℃, and 33℃. During the experiments, workers underwent neurobehavioral tests at different indoor temperatures, and thermal sensation and comfort questionnaires were administered post-test to evaluate thermal comfort. Productivity was measured by the accuracy and reaction time in the neurobehavioral tests. Electroencephalogram (EEG) recordings during the tests provided data on attention, mental workload, vigilance, and mental fatigue. The results demonstrate that indoor temperature directly affects workers' productivity and indirectly impacts it through cognitive states and thermal comfort. Analyzing correlations of cognitive state indicators and their changes over time, 27℃ and 30℃ are more conducive to enhancing PCWs' productivity. Furthermore, it was observed that workers' productivity is higher in longer tasks at the same indoor temperature compared to shorter tasks. These results offer practical guidelines for optimizing indoor temperature to better PCWs' working conditions. By identifying productivity-enhancing temperature ranges, the study provides actionable insights to boost worker efficiency, reduce cognitive strain, and sustain performance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28670"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325621/pdf/","citationCount":"0","resultStr":"{\"title\":\"The practical impact of indoor temperature on the productivity of prefabricated construction workers using electroencephalogram data.\",\"authors\":\"Hao Bai, Yian Lu, Xinying Cao, Shulong Zhuo\",\"doi\":\"10.1038/s41598-025-12024-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Comprehending the optimal indoor temperature to augment the productivity and cognitive well-being of prefabricated construction workers (PCWs) is essential for enhancing efficiency and safety in construction. Twenty-four workers participated in experiments conducted at indoor temperatures of 24℃, 27℃, 30℃, and 33℃. During the experiments, workers underwent neurobehavioral tests at different indoor temperatures, and thermal sensation and comfort questionnaires were administered post-test to evaluate thermal comfort. Productivity was measured by the accuracy and reaction time in the neurobehavioral tests. Electroencephalogram (EEG) recordings during the tests provided data on attention, mental workload, vigilance, and mental fatigue. The results demonstrate that indoor temperature directly affects workers' productivity and indirectly impacts it through cognitive states and thermal comfort. Analyzing correlations of cognitive state indicators and their changes over time, 27℃ and 30℃ are more conducive to enhancing PCWs' productivity. Furthermore, it was observed that workers' productivity is higher in longer tasks at the same indoor temperature compared to shorter tasks. These results offer practical guidelines for optimizing indoor temperature to better PCWs' working conditions. By identifying productivity-enhancing temperature ranges, the study provides actionable insights to boost worker efficiency, reduce cognitive strain, and sustain performance.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28670\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325621/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12024-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12024-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The practical impact of indoor temperature on the productivity of prefabricated construction workers using electroencephalogram data.
Comprehending the optimal indoor temperature to augment the productivity and cognitive well-being of prefabricated construction workers (PCWs) is essential for enhancing efficiency and safety in construction. Twenty-four workers participated in experiments conducted at indoor temperatures of 24℃, 27℃, 30℃, and 33℃. During the experiments, workers underwent neurobehavioral tests at different indoor temperatures, and thermal sensation and comfort questionnaires were administered post-test to evaluate thermal comfort. Productivity was measured by the accuracy and reaction time in the neurobehavioral tests. Electroencephalogram (EEG) recordings during the tests provided data on attention, mental workload, vigilance, and mental fatigue. The results demonstrate that indoor temperature directly affects workers' productivity and indirectly impacts it through cognitive states and thermal comfort. Analyzing correlations of cognitive state indicators and their changes over time, 27℃ and 30℃ are more conducive to enhancing PCWs' productivity. Furthermore, it was observed that workers' productivity is higher in longer tasks at the same indoor temperature compared to shorter tasks. These results offer practical guidelines for optimizing indoor temperature to better PCWs' working conditions. By identifying productivity-enhancing temperature ranges, the study provides actionable insights to boost worker efficiency, reduce cognitive strain, and sustain performance.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.