Minh Tai Pham Nguyen, Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Minh Khue Phan Tran, Tadashi Nakano, Thi Hong Tran
{"title":"遥感目标检测的部分特征重参数化与浅层交互。","authors":"Minh Tai Pham Nguyen, Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Minh Khue Phan Tran, Tadashi Nakano, Thi Hong Tran","doi":"10.1038/s41598-025-14035-7","DOIUrl":null,"url":null,"abstract":"<p><p>Remote sensing object detection has recently emerged as one of the challenging topics in the field of deep learning applications due to the demand for both high detection performance and computational efficiency. To address these problems, this study introduces an efficient one-stage object detector that is designed mainly for detecting objects on remote sensing images, which consists of several innovations. Firstly, an extraction block is proposed called PRepConvBlock that leverages reparameterization convolution and partial feature utilization to effectively reduce the complexity in convolution operations, allowing for the utilization of larger kernel sizes in order to form the longer interactions between features and significantly expand receptive fields. Secondly, a unique shallow multi-scale fusion framework called SB-FPN based on Bi-FPN that utilizes the cross-interaction between shallow scale and deeper scale while inheriting the bidirectional connection from Bi-FPN to enhance the visual representation of features. Lastly, a Shallow-level Optimized Reparameterization Architecture Detector (SORA-DET) is proposed by applying several introduced innovations. This object detector is designed for UAV remote sensing object detection tasks that employ up to four detection heads. As a result, our proposed detector obtains a competitive performance that outperforms most of the other large-size models and SOTA works. In detail, the SORA-DET achieves 39.3% mAP50 in the VisDrone2019 test set while reaching up to 84.0% mAP50 in the SeaDroneSeeV2 validation set. Furthermore, our proposed detector is smaller than nearly 88.1% in parameters and has an inference speed of only 5.4 ms compared to other large-scale one-stage detectors.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28629"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Partial feature reparameterization and shallow-level interaction for remote sensing object detection.\",\"authors\":\"Minh Tai Pham Nguyen, Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Minh Khue Phan Tran, Tadashi Nakano, Thi Hong Tran\",\"doi\":\"10.1038/s41598-025-14035-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remote sensing object detection has recently emerged as one of the challenging topics in the field of deep learning applications due to the demand for both high detection performance and computational efficiency. To address these problems, this study introduces an efficient one-stage object detector that is designed mainly for detecting objects on remote sensing images, which consists of several innovations. Firstly, an extraction block is proposed called PRepConvBlock that leverages reparameterization convolution and partial feature utilization to effectively reduce the complexity in convolution operations, allowing for the utilization of larger kernel sizes in order to form the longer interactions between features and significantly expand receptive fields. Secondly, a unique shallow multi-scale fusion framework called SB-FPN based on Bi-FPN that utilizes the cross-interaction between shallow scale and deeper scale while inheriting the bidirectional connection from Bi-FPN to enhance the visual representation of features. Lastly, a Shallow-level Optimized Reparameterization Architecture Detector (SORA-DET) is proposed by applying several introduced innovations. This object detector is designed for UAV remote sensing object detection tasks that employ up to four detection heads. As a result, our proposed detector obtains a competitive performance that outperforms most of the other large-size models and SOTA works. In detail, the SORA-DET achieves 39.3% mAP50 in the VisDrone2019 test set while reaching up to 84.0% mAP50 in the SeaDroneSeeV2 validation set. Furthermore, our proposed detector is smaller than nearly 88.1% in parameters and has an inference speed of only 5.4 ms compared to other large-scale one-stage detectors.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28629\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-14035-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-14035-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Partial feature reparameterization and shallow-level interaction for remote sensing object detection.
Remote sensing object detection has recently emerged as one of the challenging topics in the field of deep learning applications due to the demand for both high detection performance and computational efficiency. To address these problems, this study introduces an efficient one-stage object detector that is designed mainly for detecting objects on remote sensing images, which consists of several innovations. Firstly, an extraction block is proposed called PRepConvBlock that leverages reparameterization convolution and partial feature utilization to effectively reduce the complexity in convolution operations, allowing for the utilization of larger kernel sizes in order to form the longer interactions between features and significantly expand receptive fields. Secondly, a unique shallow multi-scale fusion framework called SB-FPN based on Bi-FPN that utilizes the cross-interaction between shallow scale and deeper scale while inheriting the bidirectional connection from Bi-FPN to enhance the visual representation of features. Lastly, a Shallow-level Optimized Reparameterization Architecture Detector (SORA-DET) is proposed by applying several introduced innovations. This object detector is designed for UAV remote sensing object detection tasks that employ up to four detection heads. As a result, our proposed detector obtains a competitive performance that outperforms most of the other large-size models and SOTA works. In detail, the SORA-DET achieves 39.3% mAP50 in the VisDrone2019 test set while reaching up to 84.0% mAP50 in the SeaDroneSeeV2 validation set. Furthermore, our proposed detector is smaller than nearly 88.1% in parameters and has an inference speed of only 5.4 ms compared to other large-scale one-stage detectors.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.