探索稳定剂,以防止晶体生长或聚集的PTX-NCs通过不同的纳米晶化技术。

IF 2.5 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Farzaneh Amiri, Ali Nokhodchi, Mohammad Barzegar-Jalali, Hadi Valizadeh
{"title":"探索稳定剂,以防止晶体生长或聚集的PTX-NCs通过不同的纳米晶化技术。","authors":"Farzaneh Amiri, Ali Nokhodchi, Mohammad Barzegar-Jalali, Hadi Valizadeh","doi":"10.1080/10837450.2025.2544579","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to prepare paclitaxel nanocrystals (PTX-NCs) for developing a delivery platform for this poorly water-soluble drug. Using biocompatible polymers as stabilizers, paclitaxel (PTX) was formulated as a nanosuspension using two techniques: (I) ultrasonication followed by freeze-drying and (II) melt-based precipitation (MBP) approach. The effectiveness of stabilizers in inhibiting crystal growth and agglomeration of PTX-NCs was discussed. Nanosuspensions developed using the MBP method by employing polyethylene glycol (PEG) derivatives offered superior results compared to the ultrasonication method. Among the various stabilizers, Pluronic F-68 and myrj 52 were more efficient against particle size enlargement. The optimized formulation containing PTX/PEG/Pluronic F-68/myrj 52 produced re-dispersible particles of about 74 nm with a smooth spherical morphology, which were stable for ∼8 h in water, indicating good physical stability following reconstitution. The particles obtained after redispersion of MBP-PTX-NCs enhanced the dissolution of PTX compared to plain crystals and had superior chemical stability. A 6-month stability test showed no significant changes in drug content or X-ray powder diffraction (XRPD) pattern. These findings highlighted the potential of forming fine particles from MBP method using biocompatible polymers as a promising method for producing drug nanocrystals (NCs) for poorly soluble drugs without expensive, time-consuming freeze-drying steps.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring stabilizing agents to prevent crystal growth or aggregation in PTX-NCs generated <i>via</i> diverse nanocrystallization technologies.\",\"authors\":\"Farzaneh Amiri, Ali Nokhodchi, Mohammad Barzegar-Jalali, Hadi Valizadeh\",\"doi\":\"10.1080/10837450.2025.2544579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to prepare paclitaxel nanocrystals (PTX-NCs) for developing a delivery platform for this poorly water-soluble drug. Using biocompatible polymers as stabilizers, paclitaxel (PTX) was formulated as a nanosuspension using two techniques: (I) ultrasonication followed by freeze-drying and (II) melt-based precipitation (MBP) approach. The effectiveness of stabilizers in inhibiting crystal growth and agglomeration of PTX-NCs was discussed. Nanosuspensions developed using the MBP method by employing polyethylene glycol (PEG) derivatives offered superior results compared to the ultrasonication method. Among the various stabilizers, Pluronic F-68 and myrj 52 were more efficient against particle size enlargement. The optimized formulation containing PTX/PEG/Pluronic F-68/myrj 52 produced re-dispersible particles of about 74 nm with a smooth spherical morphology, which were stable for ∼8 h in water, indicating good physical stability following reconstitution. The particles obtained after redispersion of MBP-PTX-NCs enhanced the dissolution of PTX compared to plain crystals and had superior chemical stability. A 6-month stability test showed no significant changes in drug content or X-ray powder diffraction (XRPD) pattern. These findings highlighted the potential of forming fine particles from MBP method using biocompatible polymers as a promising method for producing drug nanocrystals (NCs) for poorly soluble drugs without expensive, time-consuming freeze-drying steps.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2544579\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2544579","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在制备紫杉醇纳米晶体(PTX-NCs),用于开发这种低水溶性药物的给药平台。本文采用生物相容性聚合物作为稳定剂,采用两种制备技术(I)超声波冷冻干燥和(II)熔融沉淀法(MBP)制备紫杉醇(PTX)纳米混悬液。讨论了各种稳定剂抑制PTX-NCs晶体生长和团聚的效果。与超声法相比,采用聚乙二醇(PEG)衍生物的MBP方法制备的纳米混悬液具有更好的效果。在各种聚合物中,Pluronic F-68和myrj52等稳定剂对粒径增大的抑制效果较好。优化后的PTX/PEG/Pluronic F-68/myrj 52的配方产生了约74 nm的可再分散颗粒,具有光滑的球形形貌,在水中稳定约8小时,表明重构后的物理稳定性良好。与普通晶体相比,MBP-PTX-NCs粉末再分散后得到的颗粒增强了PTX的溶解性,具有优异的化学稳定性。6个月的稳定性试验显示,药物含量和x射线粉末衍射(XRPD)模式没有明显变化。这些发现强调了利用生物相容性聚合物从MBP方法形成细颗粒的潜力,作为一种有前途的方法,可以生产用于难溶性药物的药物纳米晶体(NCs),而无需昂贵且耗时的冷冻干燥步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring stabilizing agents to prevent crystal growth or aggregation in PTX-NCs generated via diverse nanocrystallization technologies.

This study aimed to prepare paclitaxel nanocrystals (PTX-NCs) for developing a delivery platform for this poorly water-soluble drug. Using biocompatible polymers as stabilizers, paclitaxel (PTX) was formulated as a nanosuspension using two techniques: (I) ultrasonication followed by freeze-drying and (II) melt-based precipitation (MBP) approach. The effectiveness of stabilizers in inhibiting crystal growth and agglomeration of PTX-NCs was discussed. Nanosuspensions developed using the MBP method by employing polyethylene glycol (PEG) derivatives offered superior results compared to the ultrasonication method. Among the various stabilizers, Pluronic F-68 and myrj 52 were more efficient against particle size enlargement. The optimized formulation containing PTX/PEG/Pluronic F-68/myrj 52 produced re-dispersible particles of about 74 nm with a smooth spherical morphology, which were stable for ∼8 h in water, indicating good physical stability following reconstitution. The particles obtained after redispersion of MBP-PTX-NCs enhanced the dissolution of PTX compared to plain crystals and had superior chemical stability. A 6-month stability test showed no significant changes in drug content or X-ray powder diffraction (XRPD) pattern. These findings highlighted the potential of forming fine particles from MBP method using biocompatible polymers as a promising method for producing drug nanocrystals (NCs) for poorly soluble drugs without expensive, time-consuming freeze-drying steps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信