反式白藜芦醇负载转移体的开发和评价:胆固醇在皮肤给药配方设计中的作用。

IF 2.4 Q2 NANOSCIENCE & NANOTECHNOLOGY
Nanotechnology, Science and Applications Pub Date : 2025-07-31 eCollection Date: 2025-01-01 DOI:10.2147/NSA.S529010
Pattarakamol Sarotsumpan, I-Hui Chiu, Pao-Chu Wu, Nicholas Mun Hoe Khong, Celine Valeria Liew, Romchat Chutoprapat
{"title":"反式白藜芦醇负载转移体的开发和评价:胆固醇在皮肤给药配方设计中的作用。","authors":"Pattarakamol Sarotsumpan, I-Hui Chiu, Pao-Chu Wu, Nicholas Mun Hoe Khong, Celine Valeria Liew, Romchat Chutoprapat","doi":"10.2147/NSA.S529010","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigated the development and characterization of trans-resveratrol-loaded transfersomes, with and without cholesterol, for potential non-irritating dermal applications.</p><p><strong>Methods: </strong>Transfersomes were prepared using thin-film hydration combined with probe sonication, incorporating hydrogenated lecithin, cholesterol, and Tween<sup>®</sup> 60 in six different ratios. The formulations were characterized for their physicochemical properties, including particle size, polydispersity index, zeta potential, entrapment efficiency, morphology, in vitro release profiles, dermal permeation potential, and safety profile.</p><p><strong>Results: </strong>All formulations exhibited particle sizes below 150 nm and zeta potentials below -30 mV, indicating favorable characteristics for dermal delivery. Cholesterol incorporation significantly increased particle size and enhanced zeta potential (p<0.05). Formulations containing 3-3.5% w/v hydrogenated lecithin achieved superior entrapment efficiency (>90%) compared to those with lower lecithin content (p<0.05), regardless of cholesterol incorporation. Transfersomes containing cholesterol displayed morphology with well-defined edges compared to cholesterol-free formulations. In vitro release studies revealed distinct release profiles, with cholesterol-free formulations releasing 70-83% of trans-resveratrol over 24 hours, compared to only 0-30% for cholesterol-containing formulations. Strat-M<sup>®</sup> membrane-based permeation studies confirmed enhanced trans-resveratrol delivery across all transfersomal systems compared to the saturated solution (p<0.05), though cholesterol showed no significant impact on permeation efficiency. These findings indicate that cholesterol influences release profile but has limited effect on permeation efficiency. Safety assessment using the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) assay classified the developed transfersomes as weak irritants, indicating their dermal safety. Notably, formulation F3, with a hydrogenated lecithin to cholesterol to Tween 60 ratio of 6:0:4, emerged as the optimal candidate, achieving the highest release rate (80.24% over 24 hours) while maintaining favorable permeation compared to control.</p><p><strong>Conclusion: </strong>These findings feature the potential of transfersomal systems, particularly cholesterol-free variants, as promising carriers for the effective and safe dermal delivery of trans-resveratrol.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"18 ","pages":"359-375"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323873/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Evaluation of Trans-Resveratrol-Loaded Transfersomes: Role of Cholesterol in Formulation Design for Dermal Delivery.\",\"authors\":\"Pattarakamol Sarotsumpan, I-Hui Chiu, Pao-Chu Wu, Nicholas Mun Hoe Khong, Celine Valeria Liew, Romchat Chutoprapat\",\"doi\":\"10.2147/NSA.S529010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study investigated the development and characterization of trans-resveratrol-loaded transfersomes, with and without cholesterol, for potential non-irritating dermal applications.</p><p><strong>Methods: </strong>Transfersomes were prepared using thin-film hydration combined with probe sonication, incorporating hydrogenated lecithin, cholesterol, and Tween<sup>®</sup> 60 in six different ratios. The formulations were characterized for their physicochemical properties, including particle size, polydispersity index, zeta potential, entrapment efficiency, morphology, in vitro release profiles, dermal permeation potential, and safety profile.</p><p><strong>Results: </strong>All formulations exhibited particle sizes below 150 nm and zeta potentials below -30 mV, indicating favorable characteristics for dermal delivery. Cholesterol incorporation significantly increased particle size and enhanced zeta potential (p<0.05). Formulations containing 3-3.5% w/v hydrogenated lecithin achieved superior entrapment efficiency (>90%) compared to those with lower lecithin content (p<0.05), regardless of cholesterol incorporation. Transfersomes containing cholesterol displayed morphology with well-defined edges compared to cholesterol-free formulations. In vitro release studies revealed distinct release profiles, with cholesterol-free formulations releasing 70-83% of trans-resveratrol over 24 hours, compared to only 0-30% for cholesterol-containing formulations. Strat-M<sup>®</sup> membrane-based permeation studies confirmed enhanced trans-resveratrol delivery across all transfersomal systems compared to the saturated solution (p<0.05), though cholesterol showed no significant impact on permeation efficiency. These findings indicate that cholesterol influences release profile but has limited effect on permeation efficiency. Safety assessment using the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) assay classified the developed transfersomes as weak irritants, indicating their dermal safety. Notably, formulation F3, with a hydrogenated lecithin to cholesterol to Tween 60 ratio of 6:0:4, emerged as the optimal candidate, achieving the highest release rate (80.24% over 24 hours) while maintaining favorable permeation compared to control.</p><p><strong>Conclusion: </strong>These findings feature the potential of transfersomal systems, particularly cholesterol-free variants, as promising carriers for the effective and safe dermal delivery of trans-resveratrol.</p>\",\"PeriodicalId\":18881,\"journal\":{\"name\":\"Nanotechnology, Science and Applications\",\"volume\":\"18 \",\"pages\":\"359-375\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology, Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/NSA.S529010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S529010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究探讨了携带和不携带胆固醇的反式白藜芦醇转移体的发展和特性,用于潜在的非刺激性皮肤应用。方法:采用薄膜水合结合探针超声制备转移体,以6种不同的比例加入氢化卵磷脂、胆固醇和Tween®60。对配方的理化性质进行了表征,包括粒径、多分散性指数、zeta电位、包封效率、形态、体外释放谱、皮肤渗透电位和安全性谱。结果:所有制剂的粒径均小于150 nm, zeta电位均小于-30 mV,具有良好的真皮给药特性。与卵磷脂含量较低的人相比,胆固醇掺入显著增加了颗粒大小,增强了zeta电位(p90%) (p®膜渗透研究证实,与饱和溶液相比,所有转移体系统的反式白藜芦醇传递都增强了(pp结论:这些发现表明,转移体系统,特别是无胆固醇的变体,有潜力成为有效和安全的皮肤传递反式白藜芦醇的载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and Evaluation of Trans-Resveratrol-Loaded Transfersomes: Role of Cholesterol in Formulation Design for Dermal Delivery.

Development and Evaluation of Trans-Resveratrol-Loaded Transfersomes: Role of Cholesterol in Formulation Design for Dermal Delivery.

Development and Evaluation of Trans-Resveratrol-Loaded Transfersomes: Role of Cholesterol in Formulation Design for Dermal Delivery.

Development and Evaluation of Trans-Resveratrol-Loaded Transfersomes: Role of Cholesterol in Formulation Design for Dermal Delivery.

Purpose: This study investigated the development and characterization of trans-resveratrol-loaded transfersomes, with and without cholesterol, for potential non-irritating dermal applications.

Methods: Transfersomes were prepared using thin-film hydration combined with probe sonication, incorporating hydrogenated lecithin, cholesterol, and Tween® 60 in six different ratios. The formulations were characterized for their physicochemical properties, including particle size, polydispersity index, zeta potential, entrapment efficiency, morphology, in vitro release profiles, dermal permeation potential, and safety profile.

Results: All formulations exhibited particle sizes below 150 nm and zeta potentials below -30 mV, indicating favorable characteristics for dermal delivery. Cholesterol incorporation significantly increased particle size and enhanced zeta potential (p<0.05). Formulations containing 3-3.5% w/v hydrogenated lecithin achieved superior entrapment efficiency (>90%) compared to those with lower lecithin content (p<0.05), regardless of cholesterol incorporation. Transfersomes containing cholesterol displayed morphology with well-defined edges compared to cholesterol-free formulations. In vitro release studies revealed distinct release profiles, with cholesterol-free formulations releasing 70-83% of trans-resveratrol over 24 hours, compared to only 0-30% for cholesterol-containing formulations. Strat-M® membrane-based permeation studies confirmed enhanced trans-resveratrol delivery across all transfersomal systems compared to the saturated solution (p<0.05), though cholesterol showed no significant impact on permeation efficiency. These findings indicate that cholesterol influences release profile but has limited effect on permeation efficiency. Safety assessment using the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) assay classified the developed transfersomes as weak irritants, indicating their dermal safety. Notably, formulation F3, with a hydrogenated lecithin to cholesterol to Tween 60 ratio of 6:0:4, emerged as the optimal candidate, achieving the highest release rate (80.24% over 24 hours) while maintaining favorable permeation compared to control.

Conclusion: These findings feature the potential of transfersomal systems, particularly cholesterol-free variants, as promising carriers for the effective and safe dermal delivery of trans-resveratrol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信