Sebastian Porsdam Mann, Jiehao Joel Seah, Stephen Latham, Julian Savulescu, Mateo Aboy, Brian D Earp
{"title":"Chat-IRB吗?应用特定语言模型如何加强研究伦理审查。","authors":"Sebastian Porsdam Mann, Jiehao Joel Seah, Stephen Latham, Julian Savulescu, Mateo Aboy, Brian D Earp","doi":"10.1136/jme-2025-110845","DOIUrl":null,"url":null,"abstract":"<p><p>Institutional review boards (IRBs) play a crucial role in ensuring the ethical conduct of human subjects research, but face challenges including inconsistency, delays, and inefficiencies. We propose the development and implementation of application-specific large language models (LLMs) to facilitate IRB review processes. These IRB-specific LLMs would be fine-tuned on IRB-specific literature and institutional datasets, and equipped with retrieval capabilities to access up-to-date, context-relevant information. We outline potential applications, including pre-review screening, preliminary analysis, consistency checking, and decision support. While addressing concerns about accuracy, context sensitivity, and human oversight, we acknowledge remaining challenges such as over-reliance on artificial intelligence and the need for transparency. By enhancing the efficiency and quality of ethical review while maintaining human judgement in critical decisions, IRB-specific LLMs offer a promising tool to improve research oversight. We call for pilot studies to evaluate the feasibility and impact of this approach.</p>","PeriodicalId":16317,"journal":{"name":"Journal of Medical Ethics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chat-IRB? How application-specific language models can enhance research ethics review.\",\"authors\":\"Sebastian Porsdam Mann, Jiehao Joel Seah, Stephen Latham, Julian Savulescu, Mateo Aboy, Brian D Earp\",\"doi\":\"10.1136/jme-2025-110845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Institutional review boards (IRBs) play a crucial role in ensuring the ethical conduct of human subjects research, but face challenges including inconsistency, delays, and inefficiencies. We propose the development and implementation of application-specific large language models (LLMs) to facilitate IRB review processes. These IRB-specific LLMs would be fine-tuned on IRB-specific literature and institutional datasets, and equipped with retrieval capabilities to access up-to-date, context-relevant information. We outline potential applications, including pre-review screening, preliminary analysis, consistency checking, and decision support. While addressing concerns about accuracy, context sensitivity, and human oversight, we acknowledge remaining challenges such as over-reliance on artificial intelligence and the need for transparency. By enhancing the efficiency and quality of ethical review while maintaining human judgement in critical decisions, IRB-specific LLMs offer a promising tool to improve research oversight. We call for pilot studies to evaluate the feasibility and impact of this approach.</p>\",\"PeriodicalId\":16317,\"journal\":{\"name\":\"Journal of Medical Ethics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Ethics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1136/jme-2025-110845\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ETHICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Ethics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1136/jme-2025-110845","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ETHICS","Score":null,"Total":0}
Chat-IRB? How application-specific language models can enhance research ethics review.
Institutional review boards (IRBs) play a crucial role in ensuring the ethical conduct of human subjects research, but face challenges including inconsistency, delays, and inefficiencies. We propose the development and implementation of application-specific large language models (LLMs) to facilitate IRB review processes. These IRB-specific LLMs would be fine-tuned on IRB-specific literature and institutional datasets, and equipped with retrieval capabilities to access up-to-date, context-relevant information. We outline potential applications, including pre-review screening, preliminary analysis, consistency checking, and decision support. While addressing concerns about accuracy, context sensitivity, and human oversight, we acknowledge remaining challenges such as over-reliance on artificial intelligence and the need for transparency. By enhancing the efficiency and quality of ethical review while maintaining human judgement in critical decisions, IRB-specific LLMs offer a promising tool to improve research oversight. We call for pilot studies to evaluate the feasibility and impact of this approach.
期刊介绍:
Journal of Medical Ethics is a leading international journal that reflects the whole field of medical ethics. The journal seeks to promote ethical reflection and conduct in scientific research and medical practice. It features articles on various ethical aspects of health care relevant to health care professionals, members of clinical ethics committees, medical ethics professionals, researchers and bioscientists, policy makers and patients.
Subscribers to the Journal of Medical Ethics also receive Medical Humanities journal at no extra cost.
JME is the official journal of the Institute of Medical Ethics.