热缺氧条件下双头巨鲷线粒体功能及能量代谢反应。

IF 4.3 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kang Chen, Zheng He, Peiyu Xie, Yihui Jia, Hong Liu, Zexia Gao, Huanling Wang
{"title":"热缺氧条件下双头巨鲷线粒体功能及能量代谢反应。","authors":"Kang Chen, Zheng He, Peiyu Xie, Yihui Jia, Hong Liu, Zexia Gao, Huanling Wang","doi":"10.1016/j.cbpc.2025.110306","DOIUrl":null,"url":null,"abstract":"<p><p>Ongoing global climate change and anthropogenic activities are increasingly subjecting aquatic animals to heat and hypoxia stress. These environmental perturbations can profoundly impact mitochondrial function and energy metabolism. The current study aimed to delineate the adaptive mechanisms of mitochondrial dynamics and energy metabolism in the blunt snout bream (Megalobrama amblycephala) under three experimental conditions: heat stress (HT group, 35 °C of temperature), hypoxia stress (LO group, 2 mg/L of dissolved oxygen), and combined heat plus hypoxia stress (HL group, 35 °C and 2 mg/L). The results demonstrated that heat and/or hypoxia stresses damaged mitochondrial structure and disrupted fusion-fission balance. The activities of key TCA cycle enzymes (e.g. SDH, CS) were significantly decreased. Conversely, energy metabolism was regulated through an increased AMP/ATP ratio and activation of AMPKα1/AMPKα2 proteins. The expression of glycolytic enzymes (PK, PFK, HK and LDH) was up-regulated. However, heat and/or hypoxia stresses resulted in severe consumption of serum glucose and liver glycogen, with the most pronounced consumption in the HL group. Other saccharides such as mannose and lactose were also significantly reduced in HT and HL groups. The decomposition and metabolism of amino acids was an important auxiliary mechanism. Regarding lipid metabolism, the expression of lipolysis and lipogenesis related genes was down-regulated, while glycerophospholipids accumulation contributed to maintaining membrane integrity. These findings benefit the understanding of environmental adaptive characteristics in aquatic animals and provide effective strategies for aquaculture management.</p>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":" ","pages":"110306"},"PeriodicalIF":4.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial function and energy metabolism response of Megalobrama amblycephala under heat and hypoxia.\",\"authors\":\"Kang Chen, Zheng He, Peiyu Xie, Yihui Jia, Hong Liu, Zexia Gao, Huanling Wang\",\"doi\":\"10.1016/j.cbpc.2025.110306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ongoing global climate change and anthropogenic activities are increasingly subjecting aquatic animals to heat and hypoxia stress. These environmental perturbations can profoundly impact mitochondrial function and energy metabolism. The current study aimed to delineate the adaptive mechanisms of mitochondrial dynamics and energy metabolism in the blunt snout bream (Megalobrama amblycephala) under three experimental conditions: heat stress (HT group, 35 °C of temperature), hypoxia stress (LO group, 2 mg/L of dissolved oxygen), and combined heat plus hypoxia stress (HL group, 35 °C and 2 mg/L). The results demonstrated that heat and/or hypoxia stresses damaged mitochondrial structure and disrupted fusion-fission balance. The activities of key TCA cycle enzymes (e.g. SDH, CS) were significantly decreased. Conversely, energy metabolism was regulated through an increased AMP/ATP ratio and activation of AMPKα1/AMPKα2 proteins. The expression of glycolytic enzymes (PK, PFK, HK and LDH) was up-regulated. However, heat and/or hypoxia stresses resulted in severe consumption of serum glucose and liver glycogen, with the most pronounced consumption in the HL group. Other saccharides such as mannose and lactose were also significantly reduced in HT and HL groups. The decomposition and metabolism of amino acids was an important auxiliary mechanism. Regarding lipid metabolism, the expression of lipolysis and lipogenesis related genes was down-regulated, while glycerophospholipids accumulation contributed to maintaining membrane integrity. These findings benefit the understanding of environmental adaptive characteristics in aquatic animals and provide effective strategies for aquaculture management.</p>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\" \",\"pages\":\"110306\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cbpc.2025.110306\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.cbpc.2025.110306","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

持续的全球气候变化和人为活动使水生动物越来越多地受到高温和缺氧的胁迫。这些环境扰动可以深刻地影响线粒体功能和能量代谢。本研究旨在研究钝口鲷(Megalobrama amblycephala)在热应激(HT组,温度35 °C)、缺氧应激(LO组,溶解氧2 mg/L)和热加缺氧复合应激(HL组,35 °C和2 mg/L)三种实验条件下线粒体动力学和能量代谢的适应机制。结果表明,高温和/或缺氧胁迫破坏了线粒体结构,破坏了融合-裂变平衡。关键的TCA循环酶(如SDH、CS)活性显著降低。相反,能量代谢通过AMP/ATP比值的增加和AMPKα1/AMPKα2蛋白的激活来调节。糖酵解酶(PK、PFK、HK、LDH)表达上调。然而,高温和/或缺氧应激导致严重的血清葡萄糖和肝糖原消耗,以HL组消耗最为明显。其他糖类如甘露糖和乳糖在HT和HL组中也显著减少。氨基酸的分解代谢是一个重要的辅助机制。脂质代谢方面,脂解和脂肪生成相关基因的表达下调,而甘油磷脂的积累有助于维持膜的完整性。这些发现有助于了解水生动物的环境适应特征,并为水产养殖管理提供有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial function and energy metabolism response of Megalobrama amblycephala under heat and hypoxia.

Ongoing global climate change and anthropogenic activities are increasingly subjecting aquatic animals to heat and hypoxia stress. These environmental perturbations can profoundly impact mitochondrial function and energy metabolism. The current study aimed to delineate the adaptive mechanisms of mitochondrial dynamics and energy metabolism in the blunt snout bream (Megalobrama amblycephala) under three experimental conditions: heat stress (HT group, 35 °C of temperature), hypoxia stress (LO group, 2 mg/L of dissolved oxygen), and combined heat plus hypoxia stress (HL group, 35 °C and 2 mg/L). The results demonstrated that heat and/or hypoxia stresses damaged mitochondrial structure and disrupted fusion-fission balance. The activities of key TCA cycle enzymes (e.g. SDH, CS) were significantly decreased. Conversely, energy metabolism was regulated through an increased AMP/ATP ratio and activation of AMPKα1/AMPKα2 proteins. The expression of glycolytic enzymes (PK, PFK, HK and LDH) was up-regulated. However, heat and/or hypoxia stresses resulted in severe consumption of serum glucose and liver glycogen, with the most pronounced consumption in the HL group. Other saccharides such as mannose and lactose were also significantly reduced in HT and HL groups. The decomposition and metabolism of amino acids was an important auxiliary mechanism. Regarding lipid metabolism, the expression of lipolysis and lipogenesis related genes was down-regulated, while glycerophospholipids accumulation contributed to maintaining membrane integrity. These findings benefit the understanding of environmental adaptive characteristics in aquatic animals and provide effective strategies for aquaculture management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信