{"title":"生物类黄酮柚皮苷在体内的抗衰老作用:从出芽酵母酿酒酵母作为模式生物的见解。","authors":"Phaniendra Alugoju, Pipob Suwanchaikasem, Apinan Senabunyarith, Ankush Prasad, Tewin Tencomnao","doi":"10.1007/s10522-025-10295-y","DOIUrl":null,"url":null,"abstract":"<p><p>Naringin is an antioxidant flavonoid rich in diverse plant species, including citrus plants. While the antioxidant activity of naringin is well documented, there has been limited research on its anti-aging potential. The aim of this study is to investigate the in vivo anti-aging effects of naringin in the budding yeast Saccharomyces cerevisiae as a model. Our findings showed that naringin substantially increased cell viability during the chronological lifespan of wild-type yeast by mitigating oxidative and apoptotic stress markers. However, naringin did not affect the viability of yeast null mutants lacking antioxidant enzymes (sod2Δ, cta1Δ, ctt1Δ, gpx1Δ, gpx2Δ, gsh1Δ; except sod1Δ and tsa1Δ), but slightly increased the viability of only pep4Δ and fis1Δ mutants, not mca1Δ. Gene expression results indicate that naringin altered the expression of genes associated with the TORC1 signaling pathway and other anti-aging genes such as SIR2 and ATG1. The study's findings also demonstrate that naringin could not increase cell viability of yeast null mutants lacking signaling pathway genes (tor1Δ, rim15Δ ras2Δ, and atg1Δ), except sch9Δ mutant during CLS. Metabolomic studies suggest that naringin treatment affects the levels of diverse class of metabolites such as amino acids, nucleotides and related compounds, vitamins, carbohydrates, and lipids in stationary phase yeast. Altogether, these findings suggest that naringin might exerts its anti-aging effects via modulating the nutrient sensing TORC1 signaling pathway, paving the way for future research to explore other aging associated gene targets.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 4","pages":"155"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo anti-aging effects of naringin, a bioflavonoid: insights from the budding yeast Saccharomyces cerevisiae as a model organism.\",\"authors\":\"Phaniendra Alugoju, Pipob Suwanchaikasem, Apinan Senabunyarith, Ankush Prasad, Tewin Tencomnao\",\"doi\":\"10.1007/s10522-025-10295-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Naringin is an antioxidant flavonoid rich in diverse plant species, including citrus plants. While the antioxidant activity of naringin is well documented, there has been limited research on its anti-aging potential. The aim of this study is to investigate the in vivo anti-aging effects of naringin in the budding yeast Saccharomyces cerevisiae as a model. Our findings showed that naringin substantially increased cell viability during the chronological lifespan of wild-type yeast by mitigating oxidative and apoptotic stress markers. However, naringin did not affect the viability of yeast null mutants lacking antioxidant enzymes (sod2Δ, cta1Δ, ctt1Δ, gpx1Δ, gpx2Δ, gsh1Δ; except sod1Δ and tsa1Δ), but slightly increased the viability of only pep4Δ and fis1Δ mutants, not mca1Δ. Gene expression results indicate that naringin altered the expression of genes associated with the TORC1 signaling pathway and other anti-aging genes such as SIR2 and ATG1. The study's findings also demonstrate that naringin could not increase cell viability of yeast null mutants lacking signaling pathway genes (tor1Δ, rim15Δ ras2Δ, and atg1Δ), except sch9Δ mutant during CLS. Metabolomic studies suggest that naringin treatment affects the levels of diverse class of metabolites such as amino acids, nucleotides and related compounds, vitamins, carbohydrates, and lipids in stationary phase yeast. Altogether, these findings suggest that naringin might exerts its anti-aging effects via modulating the nutrient sensing TORC1 signaling pathway, paving the way for future research to explore other aging associated gene targets.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":\"26 4\",\"pages\":\"155\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-025-10295-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10295-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
In vivo anti-aging effects of naringin, a bioflavonoid: insights from the budding yeast Saccharomyces cerevisiae as a model organism.
Naringin is an antioxidant flavonoid rich in diverse plant species, including citrus plants. While the antioxidant activity of naringin is well documented, there has been limited research on its anti-aging potential. The aim of this study is to investigate the in vivo anti-aging effects of naringin in the budding yeast Saccharomyces cerevisiae as a model. Our findings showed that naringin substantially increased cell viability during the chronological lifespan of wild-type yeast by mitigating oxidative and apoptotic stress markers. However, naringin did not affect the viability of yeast null mutants lacking antioxidant enzymes (sod2Δ, cta1Δ, ctt1Δ, gpx1Δ, gpx2Δ, gsh1Δ; except sod1Δ and tsa1Δ), but slightly increased the viability of only pep4Δ and fis1Δ mutants, not mca1Δ. Gene expression results indicate that naringin altered the expression of genes associated with the TORC1 signaling pathway and other anti-aging genes such as SIR2 and ATG1. The study's findings also demonstrate that naringin could not increase cell viability of yeast null mutants lacking signaling pathway genes (tor1Δ, rim15Δ ras2Δ, and atg1Δ), except sch9Δ mutant during CLS. Metabolomic studies suggest that naringin treatment affects the levels of diverse class of metabolites such as amino acids, nucleotides and related compounds, vitamins, carbohydrates, and lipids in stationary phase yeast. Altogether, these findings suggest that naringin might exerts its anti-aging effects via modulating the nutrient sensing TORC1 signaling pathway, paving the way for future research to explore other aging associated gene targets.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.