{"title":"基于还原氧化石墨烯-金纳米星复合材料的等离子体杂化异质结构用于敏感表面增强拉曼光谱传感。","authors":"Supriya Atta, Tamer Sharaf, Tuan Vo-Dinh","doi":"10.1177/00037028251344628","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we have developed a plasmonic hybrid heterostructure integrating two elements: Two-dimensional (2D) reduced graphene oxide-gold nanostars composite (rGO-GNS), and gold nanostars (GNS) substrate. By harnessing the unique plasmonic properties of rGO in chemical enhancement and that of GNS in electromagnetic enhancement, the hybrid heterostructure offers synergistic enhancement effects that enable ultra-low sensitivity and accurate identification and analysis of trace quantities of target substances. It is noteworthy that the high-density hotspots generated by strong plasmonic coupling of rGO-GNS and GNS results in ultra-high surface-enhanced Raman spectroscopy (SERS) enhancement compared to individual substrate either GNS or rGO-GNS substrate. Moreover, the uniformity and reproducibility of the GNS@rGO-GNS substrate were studied by using thiophenol (TP) as a model analyte, which indicates that the SERS sensor exhibited superior signal reproducibility with an RSD value 5% and long-term stability with a minimal signal loss after 30 days. To demonstrate a potential application of our SERS substrate, SERS detection of the pesticide thiram in river water was realized with a limit of detection (LOD) up to 50 pM, showing the potential for new opportunities for efficient chemical and biological sensing applications.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1445-1454"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Hybrid Heterostructure Based on Reduced Graphene Oxide-Gold Nanostars Composite for Sensitive Surface-Enhanced Raman Spectroscopy Sensing.\",\"authors\":\"Supriya Atta, Tamer Sharaf, Tuan Vo-Dinh\",\"doi\":\"10.1177/00037028251344628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we have developed a plasmonic hybrid heterostructure integrating two elements: Two-dimensional (2D) reduced graphene oxide-gold nanostars composite (rGO-GNS), and gold nanostars (GNS) substrate. By harnessing the unique plasmonic properties of rGO in chemical enhancement and that of GNS in electromagnetic enhancement, the hybrid heterostructure offers synergistic enhancement effects that enable ultra-low sensitivity and accurate identification and analysis of trace quantities of target substances. It is noteworthy that the high-density hotspots generated by strong plasmonic coupling of rGO-GNS and GNS results in ultra-high surface-enhanced Raman spectroscopy (SERS) enhancement compared to individual substrate either GNS or rGO-GNS substrate. Moreover, the uniformity and reproducibility of the GNS@rGO-GNS substrate were studied by using thiophenol (TP) as a model analyte, which indicates that the SERS sensor exhibited superior signal reproducibility with an RSD value 5% and long-term stability with a minimal signal loss after 30 days. To demonstrate a potential application of our SERS substrate, SERS detection of the pesticide thiram in river water was realized with a limit of detection (LOD) up to 50 pM, showing the potential for new opportunities for efficient chemical and biological sensing applications.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1445-1454\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251344628\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251344628","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Plasmonic Hybrid Heterostructure Based on Reduced Graphene Oxide-Gold Nanostars Composite for Sensitive Surface-Enhanced Raman Spectroscopy Sensing.
In this study, we have developed a plasmonic hybrid heterostructure integrating two elements: Two-dimensional (2D) reduced graphene oxide-gold nanostars composite (rGO-GNS), and gold nanostars (GNS) substrate. By harnessing the unique plasmonic properties of rGO in chemical enhancement and that of GNS in electromagnetic enhancement, the hybrid heterostructure offers synergistic enhancement effects that enable ultra-low sensitivity and accurate identification and analysis of trace quantities of target substances. It is noteworthy that the high-density hotspots generated by strong plasmonic coupling of rGO-GNS and GNS results in ultra-high surface-enhanced Raman spectroscopy (SERS) enhancement compared to individual substrate either GNS or rGO-GNS substrate. Moreover, the uniformity and reproducibility of the GNS@rGO-GNS substrate were studied by using thiophenol (TP) as a model analyte, which indicates that the SERS sensor exhibited superior signal reproducibility with an RSD value 5% and long-term stability with a minimal signal loss after 30 days. To demonstrate a potential application of our SERS substrate, SERS detection of the pesticide thiram in river water was realized with a limit of detection (LOD) up to 50 pM, showing the potential for new opportunities for efficient chemical and biological sensing applications.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”