光谱学中的复值化学计量学:逆最小二乘回归。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Thomas G Mayerhöfer, Oleksii Ilchenko, Andrii Kutsyk, Jürgen Popp
{"title":"光谱学中的复值化学计量学:逆最小二乘回归。","authors":"Thomas G Mayerhöfer, Oleksii Ilchenko, Andrii Kutsyk, Jürgen Popp","doi":"10.1177/00037028251358392","DOIUrl":null,"url":null,"abstract":"<p><p>Inverse least squares (ILS) regression is an advancement of classical least squares (CLS) regression, enabling the calculation of concentrations without requiring prior knowledge of the number of components in a mixture. Complex-valued ILS further enhances the performance of ILS by incorporating the complex refractive index function, as demonstrated in the thermodynamically ideal mixtures of benzene-toluene and benzene-cyclohexane. In both systems, the mean absolute error can be reduced by over 50% using the leave-one-out cross-validation (LVOOCV) scheme with complex-valued ILS. Additional error reduction is achievable by leveraging correlations between the errors and the imaginary components of the concentrations or volume fractions. Since the complex refractive index function can be conveniently determined using conventional infrared spectroscopy through the Kramers-Kronig relations, we believe that complex-valued machine learning has the potential to significantly advance analytical applications.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251358392"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex-Valued Chemometrics in Spectroscopy: Inverse Least Squares Regression.\",\"authors\":\"Thomas G Mayerhöfer, Oleksii Ilchenko, Andrii Kutsyk, Jürgen Popp\",\"doi\":\"10.1177/00037028251358392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inverse least squares (ILS) regression is an advancement of classical least squares (CLS) regression, enabling the calculation of concentrations without requiring prior knowledge of the number of components in a mixture. Complex-valued ILS further enhances the performance of ILS by incorporating the complex refractive index function, as demonstrated in the thermodynamically ideal mixtures of benzene-toluene and benzene-cyclohexane. In both systems, the mean absolute error can be reduced by over 50% using the leave-one-out cross-validation (LVOOCV) scheme with complex-valued ILS. Additional error reduction is achievable by leveraging correlations between the errors and the imaginary components of the concentrations or volume fractions. Since the complex refractive index function can be conveniently determined using conventional infrared spectroscopy through the Kramers-Kronig relations, we believe that complex-valued machine learning has the potential to significantly advance analytical applications.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028251358392\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251358392\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251358392","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

逆最小二乘(ILS)回归是经典最小二乘(CLS)回归的一种进步,可以在不需要事先知道混合物中成分数量的情况下计算浓度。在苯-甲苯和苯-环己烷的热力学理想混合物中,通过加入复折射率函数,络合值ILS进一步提高了ILS的性能。在这两个系统中,使用复值ILS的留一交叉验证(LVOOCV)方案,平均绝对误差可以降低50%以上。通过利用误差与浓度或体积分数的想象分量之间的相关性,可以实现额外的误差减少。由于复折射率函数可以通过Kramers-Kronig关系使用传统红外光谱方便地确定,我们相信复值机器学习具有显着推进分析应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex-Valued Chemometrics in Spectroscopy: Inverse Least Squares Regression.

Inverse least squares (ILS) regression is an advancement of classical least squares (CLS) regression, enabling the calculation of concentrations without requiring prior knowledge of the number of components in a mixture. Complex-valued ILS further enhances the performance of ILS by incorporating the complex refractive index function, as demonstrated in the thermodynamically ideal mixtures of benzene-toluene and benzene-cyclohexane. In both systems, the mean absolute error can be reduced by over 50% using the leave-one-out cross-validation (LVOOCV) scheme with complex-valued ILS. Additional error reduction is achievable by leveraging correlations between the errors and the imaginary components of the concentrations or volume fractions. Since the complex refractive index function can be conveniently determined using conventional infrared spectroscopy through the Kramers-Kronig relations, we believe that complex-valued machine learning has the potential to significantly advance analytical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信