下肢淋巴水肿患者特异性压缩治疗对间质液运动影响的数值模拟。

IF 2.7 3区 医学 Q2 BIOPHYSICS
Maha Reda, Stéphane Avril
{"title":"下肢淋巴水肿患者特异性压缩治疗对间质液运动影响的数值模拟。","authors":"Maha Reda,&nbsp;Stéphane Avril","doi":"10.1007/s10237-025-01996-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lymphedema is a chronic condition characterized by impaired lymphatic drainage, leading to fluid accumulation, swelling, and progressive tissue remodeling. Compression therapy is the primary treatment used to alleviate swelling and enhance fluid drainage, yet its precise impact on interstitial fluid dynamics remains to be understood. In this study, we developed a poroelastic computational model that simulates fluid flow and tissue deformation in the lower limb under different compression strategies and compression levels. A key feature of our work is the integration of patient-specific geometries, allowing for a more physiologically accurate representation of tissue mechanics and fluid redistribution. We simulated edema formation induced by venous insufficiency by increasing blood capillary pressure from a baseline of 10–80 mmHg, and we observed that interstitial fluid pressure (IFP) increased from a baseline value of 0 mmHg to 8 mmHg, highlighting the impact of vascular dysfunction on fluid accumulation. Simulating complete blockage of lymphatic capillaries resulted in even higher IFP values (40 mmHg) compared to models with functional lymphatics, where IFP remained around 8 mmHg for high capillary pressures, underscoring the critical role of lymphatic drainage. We further showed that an increase in tissue permeability increases gravity-driven fluid pooling, potentially exacerbating swelling in lymphedematous limbs. Additionally, we incorporated an interface pressure derived from Laplace’s law to offer a more realistic estimation of IFP and volume changes, emphasizing its importance for refining compression models and optimizing treatment strategies. These findings contribute to a deeper understanding of compression therapy’s role in interstitial fluid drainage and provide a foundation for improving patient-specific lymphedema management.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 5","pages":"1837 - 1854"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-025-01996-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Patient-specific numerical simulation of compression therapy effects on interstitial fluid motion in lower limb lymphedema\",\"authors\":\"Maha Reda,&nbsp;Stéphane Avril\",\"doi\":\"10.1007/s10237-025-01996-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lymphedema is a chronic condition characterized by impaired lymphatic drainage, leading to fluid accumulation, swelling, and progressive tissue remodeling. Compression therapy is the primary treatment used to alleviate swelling and enhance fluid drainage, yet its precise impact on interstitial fluid dynamics remains to be understood. In this study, we developed a poroelastic computational model that simulates fluid flow and tissue deformation in the lower limb under different compression strategies and compression levels. A key feature of our work is the integration of patient-specific geometries, allowing for a more physiologically accurate representation of tissue mechanics and fluid redistribution. We simulated edema formation induced by venous insufficiency by increasing blood capillary pressure from a baseline of 10–80 mmHg, and we observed that interstitial fluid pressure (IFP) increased from a baseline value of 0 mmHg to 8 mmHg, highlighting the impact of vascular dysfunction on fluid accumulation. Simulating complete blockage of lymphatic capillaries resulted in even higher IFP values (40 mmHg) compared to models with functional lymphatics, where IFP remained around 8 mmHg for high capillary pressures, underscoring the critical role of lymphatic drainage. We further showed that an increase in tissue permeability increases gravity-driven fluid pooling, potentially exacerbating swelling in lymphedematous limbs. Additionally, we incorporated an interface pressure derived from Laplace’s law to offer a more realistic estimation of IFP and volume changes, emphasizing its importance for refining compression models and optimizing treatment strategies. These findings contribute to a deeper understanding of compression therapy’s role in interstitial fluid drainage and provide a foundation for improving patient-specific lymphedema management.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"24 5\",\"pages\":\"1837 - 1854\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10237-025-01996-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-025-01996-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-025-01996-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

淋巴水肿是一种慢性疾病,其特征是淋巴排水受损,导致液体积聚、肿胀和进行性组织重塑。压缩治疗是缓解肿胀和加强液体引流的主要治疗方法,但其对间质流体动力学的确切影响仍有待了解。在这项研究中,我们建立了一个孔隙弹性计算模型,模拟了不同压缩策略和压缩水平下下肢的流体流动和组织变形。我们工作的一个关键特征是整合了患者特定的几何形状,允许更准确地表示组织力学和流体再分配的生理。我们模拟了由静脉功能不全引起的水肿形成,将毛细血管压力从基线值10-80 mmHg增加,我们观察到间质液压力(IFP)从基线值0 mmHg增加到8 mmHg,突出了血管功能障碍对液体积聚的影响。与功能淋巴模型相比,模拟淋巴毛细血管完全堵塞导致更高的IFP值(40 mmHg),在功能淋巴模型中,高毛细血管压力时IFP保持在8 mmHg左右,强调淋巴引流的关键作用。我们进一步表明,组织通透性的增加增加了重力驱动的液体池,可能加剧淋巴水肿肢体的肿胀。此外,我们结合了来自拉普拉斯定律的界面压力,以提供更现实的IFP和体积变化估计,强调其对精炼压缩模型和优化处理策略的重要性。这些发现有助于更深入地了解压迫疗法在间质液引流中的作用,并为改善患者特异性淋巴水肿管理提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patient-specific numerical simulation of compression therapy effects on interstitial fluid motion in lower limb lymphedema

Lymphedema is a chronic condition characterized by impaired lymphatic drainage, leading to fluid accumulation, swelling, and progressive tissue remodeling. Compression therapy is the primary treatment used to alleviate swelling and enhance fluid drainage, yet its precise impact on interstitial fluid dynamics remains to be understood. In this study, we developed a poroelastic computational model that simulates fluid flow and tissue deformation in the lower limb under different compression strategies and compression levels. A key feature of our work is the integration of patient-specific geometries, allowing for a more physiologically accurate representation of tissue mechanics and fluid redistribution. We simulated edema formation induced by venous insufficiency by increasing blood capillary pressure from a baseline of 10–80 mmHg, and we observed that interstitial fluid pressure (IFP) increased from a baseline value of 0 mmHg to 8 mmHg, highlighting the impact of vascular dysfunction on fluid accumulation. Simulating complete blockage of lymphatic capillaries resulted in even higher IFP values (40 mmHg) compared to models with functional lymphatics, where IFP remained around 8 mmHg for high capillary pressures, underscoring the critical role of lymphatic drainage. We further showed that an increase in tissue permeability increases gravity-driven fluid pooling, potentially exacerbating swelling in lymphedematous limbs. Additionally, we incorporated an interface pressure derived from Laplace’s law to offer a more realistic estimation of IFP and volume changes, emphasizing its importance for refining compression models and optimizing treatment strategies. These findings contribute to a deeper understanding of compression therapy’s role in interstitial fluid drainage and provide a foundation for improving patient-specific lymphedema management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信