{"title":"从微粒到散装水凝胶:软骨组织工程中出现的颗粒状水凝胶。","authors":"Akshat Joshi, Akhilesh Agrawal, Saswat Choudhury, Subha Narayana Rath, Akshay Joshi, Kushal Taori, Savadamoorthi Kamatchi Subramani, Sabari Murugesan, Ujjayan Majumdar, Ji-hoo Lee and Suk-Jung Oh","doi":"10.1039/D5BM00801H","DOIUrl":null,"url":null,"abstract":"<p >Articular cartilage exhibits a limited capacity for self-repair, prompting extensive research into advanced biomaterials that can support tissue regeneration. Among these, injectable hydrogels have gained attention for their minimally invasive delivery and suitability for bioprinting applications. However, conventional nanoporous bulk hydrogels often lack the necessary microporosity and architectural complexity to fully support effective tissue regeneration. To overcome these shortcomings, recent innovations have turned toward granular hydrogels—injectable materials fabricated by dense packing of hydrogel microparticles into cohesive, microporous bulk hydrogels. These granular systems offer improved injectability, superior microporosity, and the ability to form heterogeneous bioinks/injectables that better replicate the natural extracellular matrix, thereby promoting more efficient regeneration. This review delves into the advancements in granular hydrogel technology, with a focus on the fabrication of hydrogel microparticles and the jamming strategies used to assemble them into granular injectables/bioinks. It further explores their potential in cartilage tissue repair, emphasizing the benefits of such emerging microporous bulk assemblies in minimally invasive procedures (MIPs) or as smart bioinks for fabricating patient specific implants. Finally, the review outlines key opportunities and challenges in translating these innovative materials into clinical applications, highlighting the growing promise of granular hydrogels in addressing current limitations in cartilage regeneration.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 18","pages":" 4916-4951"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From microparticles to bulk hydrogels: emerging granular hydrogels in cartilage tissue engineering\",\"authors\":\"Akshat Joshi, Akhilesh Agrawal, Saswat Choudhury, Subha Narayana Rath, Akshay Joshi, Kushal Taori, Savadamoorthi Kamatchi Subramani, Sabari Murugesan, Ujjayan Majumdar, Ji-hoo Lee and Suk-Jung Oh\",\"doi\":\"10.1039/D5BM00801H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Articular cartilage exhibits a limited capacity for self-repair, prompting extensive research into advanced biomaterials that can support tissue regeneration. Among these, injectable hydrogels have gained attention for their minimally invasive delivery and suitability for bioprinting applications. However, conventional nanoporous bulk hydrogels often lack the necessary microporosity and architectural complexity to fully support effective tissue regeneration. To overcome these shortcomings, recent innovations have turned toward granular hydrogels—injectable materials fabricated by dense packing of hydrogel microparticles into cohesive, microporous bulk hydrogels. These granular systems offer improved injectability, superior microporosity, and the ability to form heterogeneous bioinks/injectables that better replicate the natural extracellular matrix, thereby promoting more efficient regeneration. This review delves into the advancements in granular hydrogel technology, with a focus on the fabrication of hydrogel microparticles and the jamming strategies used to assemble them into granular injectables/bioinks. It further explores their potential in cartilage tissue repair, emphasizing the benefits of such emerging microporous bulk assemblies in minimally invasive procedures (MIPs) or as smart bioinks for fabricating patient specific implants. Finally, the review outlines key opportunities and challenges in translating these innovative materials into clinical applications, highlighting the growing promise of granular hydrogels in addressing current limitations in cartilage regeneration.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 18\",\"pages\":\" 4916-4951\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00801h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00801h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
From microparticles to bulk hydrogels: emerging granular hydrogels in cartilage tissue engineering
Articular cartilage exhibits a limited capacity for self-repair, prompting extensive research into advanced biomaterials that can support tissue regeneration. Among these, injectable hydrogels have gained attention for their minimally invasive delivery and suitability for bioprinting applications. However, conventional nanoporous bulk hydrogels often lack the necessary microporosity and architectural complexity to fully support effective tissue regeneration. To overcome these shortcomings, recent innovations have turned toward granular hydrogels—injectable materials fabricated by dense packing of hydrogel microparticles into cohesive, microporous bulk hydrogels. These granular systems offer improved injectability, superior microporosity, and the ability to form heterogeneous bioinks/injectables that better replicate the natural extracellular matrix, thereby promoting more efficient regeneration. This review delves into the advancements in granular hydrogel technology, with a focus on the fabrication of hydrogel microparticles and the jamming strategies used to assemble them into granular injectables/bioinks. It further explores their potential in cartilage tissue repair, emphasizing the benefits of such emerging microporous bulk assemblies in minimally invasive procedures (MIPs) or as smart bioinks for fabricating patient specific implants. Finally, the review outlines key opportunities and challenges in translating these innovative materials into clinical applications, highlighting the growing promise of granular hydrogels in addressing current limitations in cartilage regeneration.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.