具有自适应孔的光活化三维共价有机框架膜用于co2识别和分离

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Congcong Yin, Muning Chen, Ziyin Zhang, Kai Liu, Jinglin Gao, Xin Zhao, Yuping Wu, Yong Wang
{"title":"具有自适应孔的光活化三维共价有机框架膜用于co2识别和分离","authors":"Congcong Yin, Muning Chen, Ziyin Zhang, Kai Liu, Jinglin Gao, Xin Zhao, Yuping Wu, Yong Wang","doi":"10.1126/sciadv.adw8452","DOIUrl":null,"url":null,"abstract":"Creation of membrane channels capable of recognizing diverse molecules is desirable for advancing molecular transport and separation, but it remains difficult to precisely control their conformation and achieve dynamic adaption to specific molecules. Here, we demonstrate fine-tuning the pore environment within 3D covalent organic framework (COF) that can precisely control its pore size and polarity to recognize CO <jats:sub>2</jats:sub> . The pores are integrated with azobenzene units with photo-adaptable trans-to-cis isomerization, enabling dynamic pore size regulation at angstrom scale. Moreover, the isomerization induces drastic changes in intrapore polarity, which exert profound effects on the intermolecular affinity through the dipole-quadrupole interaction. Featuring these dynamic natures, the 3D COF membrane cooperating the size exclusion effect with a molecular recognition ability toward CO <jats:sub>2</jats:sub> . As a result, light-gating separation experiments show the superior CO <jats:sub>2</jats:sub> capture performance with a N <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> selectivity of 27.6. Theoretical calculations reveal that cis-state azobenzene can reduce the electron transfer barrier from azobenzene to CO <jats:sub>2</jats:sub> , thereby providing a molecular recognition pathway.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"6 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-activated 3D covalent organic framework membranes with adaptive pores for CO 2 recognition and separation\",\"authors\":\"Congcong Yin, Muning Chen, Ziyin Zhang, Kai Liu, Jinglin Gao, Xin Zhao, Yuping Wu, Yong Wang\",\"doi\":\"10.1126/sciadv.adw8452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creation of membrane channels capable of recognizing diverse molecules is desirable for advancing molecular transport and separation, but it remains difficult to precisely control their conformation and achieve dynamic adaption to specific molecules. Here, we demonstrate fine-tuning the pore environment within 3D covalent organic framework (COF) that can precisely control its pore size and polarity to recognize CO <jats:sub>2</jats:sub> . The pores are integrated with azobenzene units with photo-adaptable trans-to-cis isomerization, enabling dynamic pore size regulation at angstrom scale. Moreover, the isomerization induces drastic changes in intrapore polarity, which exert profound effects on the intermolecular affinity through the dipole-quadrupole interaction. Featuring these dynamic natures, the 3D COF membrane cooperating the size exclusion effect with a molecular recognition ability toward CO <jats:sub>2</jats:sub> . As a result, light-gating separation experiments show the superior CO <jats:sub>2</jats:sub> capture performance with a N <jats:sub>2</jats:sub> /CO <jats:sub>2</jats:sub> selectivity of 27.6. Theoretical calculations reveal that cis-state azobenzene can reduce the electron transfer barrier from azobenzene to CO <jats:sub>2</jats:sub> , thereby providing a molecular recognition pathway.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adw8452\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adw8452","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

创建能够识别不同分子的膜通道是促进分子运输和分离的理想选择,但精确控制其构象并实现对特定分子的动态适应仍然很困难。在这里,我们展示了在三维共价有机框架(COF)内微调孔隙环境,可以精确控制其孔径和极性来识别CO 2。孔隙与偶氮苯单元集成,具有光适应性的反式到顺式异构化,可以在埃尺度上进行动态孔径调节。此外,异构化引起了胞内极性的剧烈变化,并通过偶极子-四极子相互作用对分子间亲和力产生了深远的影响。具有这些动态特性的三维碳膜,既具有尺寸排斥效应,又具有对co2的分子识别能力。结果表明,光门控分离实验显示出优异的co2捕获性能,n2 / co2选择性为27.6。理论计算表明,顺态偶氮苯可以降低偶氮苯对CO 2的电子转移势垒,从而提供了一种分子识别途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-activated 3D covalent organic framework membranes with adaptive pores for CO 2 recognition and separation
Creation of membrane channels capable of recognizing diverse molecules is desirable for advancing molecular transport and separation, but it remains difficult to precisely control their conformation and achieve dynamic adaption to specific molecules. Here, we demonstrate fine-tuning the pore environment within 3D covalent organic framework (COF) that can precisely control its pore size and polarity to recognize CO 2 . The pores are integrated with azobenzene units with photo-adaptable trans-to-cis isomerization, enabling dynamic pore size regulation at angstrom scale. Moreover, the isomerization induces drastic changes in intrapore polarity, which exert profound effects on the intermolecular affinity through the dipole-quadrupole interaction. Featuring these dynamic natures, the 3D COF membrane cooperating the size exclusion effect with a molecular recognition ability toward CO 2 . As a result, light-gating separation experiments show the superior CO 2 capture performance with a N 2 /CO 2 selectivity of 27.6. Theoretical calculations reveal that cis-state azobenzene can reduce the electron transfer barrier from azobenzene to CO 2 , thereby providing a molecular recognition pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信