解决薄膜复合聚酰胺纳滤膜的水力阻力。

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Senlin Shao, Juntao Xing, Hongting Wan, Jiajia Lu, Li Long, Ruijun Zhang, Hao Guo and Chuyang Tang*, 
{"title":"解决薄膜复合聚酰胺纳滤膜的水力阻力。","authors":"Senlin Shao,&nbsp;Juntao Xing,&nbsp;Hongting Wan,&nbsp;Jiajia Lu,&nbsp;Li Long,&nbsp;Ruijun Zhang,&nbsp;Hao Guo and Chuyang Tang*,&nbsp;","doi":"10.1021/acs.est.5c08645","DOIUrl":null,"url":null,"abstract":"<p >Thin-film composite (TFC) nanofiltration (NF) membranes are widely used in water treatment and resource recovery. Researchers generally take for granted that the dense polyamide rejection film dictates the overall hydraulic resistance of these membranes, neglecting the contributions of the substrate and the transverse transport of water to reach substrate pores. To address this critical gap, we developed a resistance-in-series model to quantify the resistances from the polyamide film, substrate, and transverse transport. Calibration with multiple experimental data sets revealed that the polyamide film resistance varied over a wide range of 2.90 × 10<sup>12</sup> to 40.15 × 10<sup>12</sup> m<sup>–1</sup>, strongly correlating to film thicknesses (correlation coefficients &gt;0.95), with a thickness-normalized resistance of (0.44 ± 0.12) × 10<sup>12</sup> m<sup>–1</sup> nm<sup>–1</sup>. Contrarily, the intrinsic water permeability of polyamide material showed less variation (0.53 × 10<sup>3</sup> to 1.56 × 10<sup>3</sup> LMH bar<sup>–1</sup> nm). Contrary to common belief, both the substrate and transverse transport contributed significant resistances of (2.4 ± 1.3) × 10<sup>12</sup> and 5 × 10<sup>12</sup> m<sup>–1</sup>, respectively. These two resistances became particularly non-negligible for membranes with thinner polyamide films. Our study provides the first detailed quantitative analysis of key contributors to hydraulic resistance and provides valuable insights for high-permeable NF membranes.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 32","pages":"17372–17380"},"PeriodicalIF":11.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolving Hydraulic Resistances in Thin-Film Composite Polyamide Nanofiltration Membranes\",\"authors\":\"Senlin Shao,&nbsp;Juntao Xing,&nbsp;Hongting Wan,&nbsp;Jiajia Lu,&nbsp;Li Long,&nbsp;Ruijun Zhang,&nbsp;Hao Guo and Chuyang Tang*,&nbsp;\",\"doi\":\"10.1021/acs.est.5c08645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Thin-film composite (TFC) nanofiltration (NF) membranes are widely used in water treatment and resource recovery. Researchers generally take for granted that the dense polyamide rejection film dictates the overall hydraulic resistance of these membranes, neglecting the contributions of the substrate and the transverse transport of water to reach substrate pores. To address this critical gap, we developed a resistance-in-series model to quantify the resistances from the polyamide film, substrate, and transverse transport. Calibration with multiple experimental data sets revealed that the polyamide film resistance varied over a wide range of 2.90 × 10<sup>12</sup> to 40.15 × 10<sup>12</sup> m<sup>–1</sup>, strongly correlating to film thicknesses (correlation coefficients &gt;0.95), with a thickness-normalized resistance of (0.44 ± 0.12) × 10<sup>12</sup> m<sup>–1</sup> nm<sup>–1</sup>. Contrarily, the intrinsic water permeability of polyamide material showed less variation (0.53 × 10<sup>3</sup> to 1.56 × 10<sup>3</sup> LMH bar<sup>–1</sup> nm). Contrary to common belief, both the substrate and transverse transport contributed significant resistances of (2.4 ± 1.3) × 10<sup>12</sup> and 5 × 10<sup>12</sup> m<sup>–1</sup>, respectively. These two resistances became particularly non-negligible for membranes with thinner polyamide films. Our study provides the first detailed quantitative analysis of key contributors to hydraulic resistance and provides valuable insights for high-permeable NF membranes.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 32\",\"pages\":\"17372–17380\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c08645\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c08645","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

薄膜复合纳滤膜(TFC)在水处理和资源回收中有着广泛的应用。研究人员通常想当然地认为,密集的聚酰胺排斥膜决定了这些膜的总体水力阻力,而忽略了基质和水到达基质孔隙的横向运输的贡献。为了解决这一关键问题,我们开发了一个电阻串联模型来量化来自聚酰胺薄膜、衬底和横向传输的电阻。通过对多个实验数据集的校准,发现聚酰胺薄膜电阻在2.90 × 1012 ~ 40.15 × 1012 m-1的范围内变化,与薄膜厚度密切相关(相关系数>0.95),厚度归一化电阻为(0.44±0.12)× 1012 m-1 nm-1。相反,聚酰胺材料的固有透水性变化较小(0.53 × 103 ~ 1.56 × 103 LMH bar-1 nm)。与通常的看法相反,基底和横向输运分别贡献了(2.4±1.3)× 1012和5 × 1012 m-1的显著电阻。对于具有较薄聚酰胺薄膜的膜,这两个电阻变得特别不可忽略。我们的研究首次提供了对水力阻力关键因素的详细定量分析,并为高透性NF膜提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Resolving Hydraulic Resistances in Thin-Film Composite Polyamide Nanofiltration Membranes

Resolving Hydraulic Resistances in Thin-Film Composite Polyamide Nanofiltration Membranes

Thin-film composite (TFC) nanofiltration (NF) membranes are widely used in water treatment and resource recovery. Researchers generally take for granted that the dense polyamide rejection film dictates the overall hydraulic resistance of these membranes, neglecting the contributions of the substrate and the transverse transport of water to reach substrate pores. To address this critical gap, we developed a resistance-in-series model to quantify the resistances from the polyamide film, substrate, and transverse transport. Calibration with multiple experimental data sets revealed that the polyamide film resistance varied over a wide range of 2.90 × 1012 to 40.15 × 1012 m–1, strongly correlating to film thicknesses (correlation coefficients >0.95), with a thickness-normalized resistance of (0.44 ± 0.12) × 1012 m–1 nm–1. Contrarily, the intrinsic water permeability of polyamide material showed less variation (0.53 × 103 to 1.56 × 103 LMH bar–1 nm). Contrary to common belief, both the substrate and transverse transport contributed significant resistances of (2.4 ± 1.3) × 1012 and 5 × 1012 m–1, respectively. These two resistances became particularly non-negligible for membranes with thinner polyamide films. Our study provides the first detailed quantitative analysis of key contributors to hydraulic resistance and provides valuable insights for high-permeable NF membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信