Yung Ching Lee, Yang Bu, Sheng Ni, Yuze Liu, Anni Hu and Levent Yobas
{"title":"一种基于核酸无试剂电泳纯化和LAMP比色法的血清MRSA快速检测系统","authors":"Yung Ching Lee, Yang Bu, Sheng Ni, Yuze Liu, Anni Hu and Levent Yobas","doi":"10.1039/D5LC00152H","DOIUrl":null,"url":null,"abstract":"<p >Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) poses a significant threat as a leading cause of nosocomial infections, inflicting severe complications and fatalities worldwide. Its rising prevalence has become a major public health concern as its resistance to common antibiotics complicates treatments, placing additional burden on healthcare systems. Microbial culture is the “gold standard” for diagnosing MRSA; however, this method is time-consuming and labor-intensive, often leading to prolonged delays in diagnosis and treatment. In contrast, nucleic acid amplification tests (NAATs) dramatically reduce diagnostic times to mere hours, while maintaining high sensitivity and specificity. Bringing NAATs to the point of care can facilitate timely treatment decisions and yet requires a compact “sample-to-answer” system whose development has long been hindered by the required sample preparation for these tests. Here, we present such a system detecting MRSA in human serum through a simple microfluidic chip, achieving a limit of detection of 1 CFU per reaction and a turnaround time of just 45 min. The chip effectively overcomes the sample preparation challenge with an innovative use of a sieve, a dense array of micropillars with submicrometer gaps. Along with associated reservoirs, this sieve integrates bacterial lysis, reagent-free electrophoretic purification and loop-mediated isothermal amplification (LAMP) of nucleic acids with colorimetric detection visible to the naked eye. Within the sieve, nucleic acids are selectively driven by rotating electric fields and focused near the sieve center while steady electric fields remove all contaminants, without the need for reagents. The system shows great potential for point-of-care diagnostics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 19","pages":" 5019-5029"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d5lc00152h?page=search","citationCount":"0","resultStr":"{\"title\":\"A compact sample-to-answer system for rapid MRSA detection in serum based on reagent-free electrophoretic purification of nucleic acids and colorimetric LAMP\",\"authors\":\"Yung Ching Lee, Yang Bu, Sheng Ni, Yuze Liu, Anni Hu and Levent Yobas\",\"doi\":\"10.1039/D5LC00152H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) poses a significant threat as a leading cause of nosocomial infections, inflicting severe complications and fatalities worldwide. Its rising prevalence has become a major public health concern as its resistance to common antibiotics complicates treatments, placing additional burden on healthcare systems. Microbial culture is the “gold standard” for diagnosing MRSA; however, this method is time-consuming and labor-intensive, often leading to prolonged delays in diagnosis and treatment. In contrast, nucleic acid amplification tests (NAATs) dramatically reduce diagnostic times to mere hours, while maintaining high sensitivity and specificity. Bringing NAATs to the point of care can facilitate timely treatment decisions and yet requires a compact “sample-to-answer” system whose development has long been hindered by the required sample preparation for these tests. Here, we present such a system detecting MRSA in human serum through a simple microfluidic chip, achieving a limit of detection of 1 CFU per reaction and a turnaround time of just 45 min. The chip effectively overcomes the sample preparation challenge with an innovative use of a sieve, a dense array of micropillars with submicrometer gaps. Along with associated reservoirs, this sieve integrates bacterial lysis, reagent-free electrophoretic purification and loop-mediated isothermal amplification (LAMP) of nucleic acids with colorimetric detection visible to the naked eye. Within the sieve, nucleic acids are selectively driven by rotating electric fields and focused near the sieve center while steady electric fields remove all contaminants, without the need for reagents. The system shows great potential for point-of-care diagnostics.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 19\",\"pages\":\" 5019-5029\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d5lc00152h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00152h\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00152h","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A compact sample-to-answer system for rapid MRSA detection in serum based on reagent-free electrophoretic purification of nucleic acids and colorimetric LAMP
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant threat as a leading cause of nosocomial infections, inflicting severe complications and fatalities worldwide. Its rising prevalence has become a major public health concern as its resistance to common antibiotics complicates treatments, placing additional burden on healthcare systems. Microbial culture is the “gold standard” for diagnosing MRSA; however, this method is time-consuming and labor-intensive, often leading to prolonged delays in diagnosis and treatment. In contrast, nucleic acid amplification tests (NAATs) dramatically reduce diagnostic times to mere hours, while maintaining high sensitivity and specificity. Bringing NAATs to the point of care can facilitate timely treatment decisions and yet requires a compact “sample-to-answer” system whose development has long been hindered by the required sample preparation for these tests. Here, we present such a system detecting MRSA in human serum through a simple microfluidic chip, achieving a limit of detection of 1 CFU per reaction and a turnaround time of just 45 min. The chip effectively overcomes the sample preparation challenge with an innovative use of a sieve, a dense array of micropillars with submicrometer gaps. Along with associated reservoirs, this sieve integrates bacterial lysis, reagent-free electrophoretic purification and loop-mediated isothermal amplification (LAMP) of nucleic acids with colorimetric detection visible to the naked eye. Within the sieve, nucleic acids are selectively driven by rotating electric fields and focused near the sieve center while steady electric fields remove all contaminants, without the need for reagents. The system shows great potential for point-of-care diagnostics.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.