{"title":"压缩蛋白I和拓扑异构酶I α在单分子DNA压缩中的功能相互作用","authors":"Yuko Tsubota, Keishi Shintomi, Kazuhisa Kinoshita, Yuki Masahara-Negishi, Yuuki Aizawa, Masami Shima, Tatsuya Hirano, Tomoko Nishiyama","doi":"10.1038/s41467-025-62600-5","DOIUrl":null,"url":null,"abstract":"<p>Condensin I and topoisomerase IIα (topo IIα) are chromosomal ATPases essential for mitotic chromosome assembly. Mechanistically how the two ATPases cooperate to assemble mitotic chromosomes remains unknown. Here we investigate the interplay between condensin I and topo IIα at single-molecule resolution. While condensin I alone exhibits ATP-dependent DNA loop formation, it generates stable, compact structures (“lumps”) in the presence of topo IIα in a manner dependent on its C-terminal domain. These lumps predominantly contain a single condensin I complex and a single topo IIα dimer. The strand passage activity of topo IIα introduces DNA knots within the lumps, rendering them resistant to protease treatment. An ATP hydrolysis-deficient mutant of condensin I forms smaller lumps, in which the probability of DNA knotting is markedly reduced. Our findings demonstrate that topo IIα-mediated strand passage is functionally coupled with condensin I-mediated loop extrusion, providing insights into the mechanism underlying mitotic chromosome assembly.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"47 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional interplay between condensin I and topoisomerase Iiα in single-molecule DNA compaction\",\"authors\":\"Yuko Tsubota, Keishi Shintomi, Kazuhisa Kinoshita, Yuki Masahara-Negishi, Yuuki Aizawa, Masami Shima, Tatsuya Hirano, Tomoko Nishiyama\",\"doi\":\"10.1038/s41467-025-62600-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Condensin I and topoisomerase IIα (topo IIα) are chromosomal ATPases essential for mitotic chromosome assembly. Mechanistically how the two ATPases cooperate to assemble mitotic chromosomes remains unknown. Here we investigate the interplay between condensin I and topo IIα at single-molecule resolution. While condensin I alone exhibits ATP-dependent DNA loop formation, it generates stable, compact structures (“lumps”) in the presence of topo IIα in a manner dependent on its C-terminal domain. These lumps predominantly contain a single condensin I complex and a single topo IIα dimer. The strand passage activity of topo IIα introduces DNA knots within the lumps, rendering them resistant to protease treatment. An ATP hydrolysis-deficient mutant of condensin I forms smaller lumps, in which the probability of DNA knotting is markedly reduced. Our findings demonstrate that topo IIα-mediated strand passage is functionally coupled with condensin I-mediated loop extrusion, providing insights into the mechanism underlying mitotic chromosome assembly.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62600-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62600-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Functional interplay between condensin I and topoisomerase Iiα in single-molecule DNA compaction
Condensin I and topoisomerase IIα (topo IIα) are chromosomal ATPases essential for mitotic chromosome assembly. Mechanistically how the two ATPases cooperate to assemble mitotic chromosomes remains unknown. Here we investigate the interplay between condensin I and topo IIα at single-molecule resolution. While condensin I alone exhibits ATP-dependent DNA loop formation, it generates stable, compact structures (“lumps”) in the presence of topo IIα in a manner dependent on its C-terminal domain. These lumps predominantly contain a single condensin I complex and a single topo IIα dimer. The strand passage activity of topo IIα introduces DNA knots within the lumps, rendering them resistant to protease treatment. An ATP hydrolysis-deficient mutant of condensin I forms smaller lumps, in which the probability of DNA knotting is markedly reduced. Our findings demonstrate that topo IIα-mediated strand passage is functionally coupled with condensin I-mediated loop extrusion, providing insights into the mechanism underlying mitotic chromosome assembly.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.