Christopher A. Thomas, Henry Brinkerhoff, Jonathan M. Craig, Shuichi Hoshika, Desislava Mihaylova, Akira M. Pfeffer, Michaela C. Franzi, Sarah J. Abell, Jessica D. Carrasco, Jens H. Gundlach, Steven A. Benner, Andrew H. Laszlo
{"title":"测序由人工碱基组成的DNA模拟物","authors":"Christopher A. Thomas, Henry Brinkerhoff, Jonathan M. Craig, Shuichi Hoshika, Desislava Mihaylova, Akira M. Pfeffer, Michaela C. Franzi, Sarah J. Abell, Jessica D. Carrasco, Jens H. Gundlach, Steven A. Benner, Andrew H. Laszlo","doi":"10.1038/s41467-025-61991-9","DOIUrl":null,"url":null,"abstract":"<p>“ALternative Isoinformational ENgineered” (ALIEN) DNA is a biomimetic polymer composed of four entirely anthropogenic nucleotides. These alternative nucleosides form base pairs orthogonal to canonical bases and fold into the familiar B-form DNA double-helix, endowing ALIEN DNA with valuable biotechnological applications. The ability to sequence ALIEN DNA is essential for its continued development. However traditional sequencing approaches rely on chemical recognition of ACGT-DNA and cannot be easily adapted to ALIEN DNA. Here we demonstrate de novo nanopore sequencing of DNA comprised entirely of the four anthropogenic DNA bases. We show direct, label-free, single-molecule sequencing of such nucleic acids without the requirements of fluorescent labels, transliteration, amplification, or enzymatic synthesis. This paves the way for routine, accessible, and high-accuracy sequencing of DNA beyond A, C, G, and T.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"30 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequencing a DNA analog composed of artificial bases\",\"authors\":\"Christopher A. Thomas, Henry Brinkerhoff, Jonathan M. Craig, Shuichi Hoshika, Desislava Mihaylova, Akira M. Pfeffer, Michaela C. Franzi, Sarah J. Abell, Jessica D. Carrasco, Jens H. Gundlach, Steven A. Benner, Andrew H. Laszlo\",\"doi\":\"10.1038/s41467-025-61991-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>“ALternative Isoinformational ENgineered” (ALIEN) DNA is a biomimetic polymer composed of four entirely anthropogenic nucleotides. These alternative nucleosides form base pairs orthogonal to canonical bases and fold into the familiar B-form DNA double-helix, endowing ALIEN DNA with valuable biotechnological applications. The ability to sequence ALIEN DNA is essential for its continued development. However traditional sequencing approaches rely on chemical recognition of ACGT-DNA and cannot be easily adapted to ALIEN DNA. Here we demonstrate de novo nanopore sequencing of DNA comprised entirely of the four anthropogenic DNA bases. We show direct, label-free, single-molecule sequencing of such nucleic acids without the requirements of fluorescent labels, transliteration, amplification, or enzymatic synthesis. This paves the way for routine, accessible, and high-accuracy sequencing of DNA beyond A, C, G, and T.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61991-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61991-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sequencing a DNA analog composed of artificial bases
“ALternative Isoinformational ENgineered” (ALIEN) DNA is a biomimetic polymer composed of four entirely anthropogenic nucleotides. These alternative nucleosides form base pairs orthogonal to canonical bases and fold into the familiar B-form DNA double-helix, endowing ALIEN DNA with valuable biotechnological applications. The ability to sequence ALIEN DNA is essential for its continued development. However traditional sequencing approaches rely on chemical recognition of ACGT-DNA and cannot be easily adapted to ALIEN DNA. Here we demonstrate de novo nanopore sequencing of DNA comprised entirely of the four anthropogenic DNA bases. We show direct, label-free, single-molecule sequencing of such nucleic acids without the requirements of fluorescent labels, transliteration, amplification, or enzymatic synthesis. This paves the way for routine, accessible, and high-accuracy sequencing of DNA beyond A, C, G, and T.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.