通过磷酸脲衍生物最小化埋藏界面能量损失,实现高效碳基介观钙钛矿太阳能电池。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-06 DOI:10.1002/smll.202507384
Jinjiang Wang, Yongxiang Cai, Yuanwei Pu, Zhiwei Xiao, Tianhuan Huang, Dongjie Wang, Zheling Zhang, Jian Xiong, Doudou Zhang, Jian Zhang
{"title":"通过磷酸脲衍生物最小化埋藏界面能量损失,实现高效碳基介观钙钛矿太阳能电池。","authors":"Jinjiang Wang,&nbsp;Yongxiang Cai,&nbsp;Yuanwei Pu,&nbsp;Zhiwei Xiao,&nbsp;Tianhuan Huang,&nbsp;Dongjie Wang,&nbsp;Zheling Zhang,&nbsp;Jian Xiong,&nbsp;Doudou Zhang,&nbsp;Jian Zhang","doi":"10.1002/smll.202507384","DOIUrl":null,"url":null,"abstract":"<p>Carbon-based mesoscopic perovskite solar cells (C-MPSCs) have attracted widespread attention owing to the advantages of printable fabrication and excellent stability. However, the nonradiative recombination loss at buried interfaces hinders further efficiency improvements of C-MPSCs. In the study, urea phosphate derivative is utilized as a modifier for the buried interfaces of C-MPSCs. In the mesoporous titanium dioxide (m-TiO<sub>2</sub>) layer, guanylurea phosphate (GUP) can interact with TiO<sub>2</sub>, anchoring to the surface of m-TiO<sub>2</sub> and forming a molecular bridge at the perovskite/m-TiO<sub>2</sub> interface. The molecular bridge facilitates the extraction of charge carriers and minimizes nonradiative recombination losses, while GUP can passivate the dangling Pb<sup>2+</sup> and I<sup>−</sup> vacancy defects in the perovskite, respectively. Furthermore, GUP helps slow down the perovskite crystallization, promotes pore filling, reduces residual stress in the device, and optimizes energy level alignment. Consequently, the power conversion efficiency of C-MPSCs with GUP increases to 19.78%, from 18.22% of the control devices. C-MPSCs with GUP exhibit excellent stability in air storage, thermal aging, and damp heat stability tests. The study provides a novel approach to eliminate nonradiative recombination losses at the buried interfaces of C-MPSCs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 38","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing Buried Interface Energy Losses via Urea Phosphate Derivatives Enable High-Efficiency Carbon-Based Mesoscopic Perovskite Solar Cells\",\"authors\":\"Jinjiang Wang,&nbsp;Yongxiang Cai,&nbsp;Yuanwei Pu,&nbsp;Zhiwei Xiao,&nbsp;Tianhuan Huang,&nbsp;Dongjie Wang,&nbsp;Zheling Zhang,&nbsp;Jian Xiong,&nbsp;Doudou Zhang,&nbsp;Jian Zhang\",\"doi\":\"10.1002/smll.202507384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon-based mesoscopic perovskite solar cells (C-MPSCs) have attracted widespread attention owing to the advantages of printable fabrication and excellent stability. However, the nonradiative recombination loss at buried interfaces hinders further efficiency improvements of C-MPSCs. In the study, urea phosphate derivative is utilized as a modifier for the buried interfaces of C-MPSCs. In the mesoporous titanium dioxide (m-TiO<sub>2</sub>) layer, guanylurea phosphate (GUP) can interact with TiO<sub>2</sub>, anchoring to the surface of m-TiO<sub>2</sub> and forming a molecular bridge at the perovskite/m-TiO<sub>2</sub> interface. The molecular bridge facilitates the extraction of charge carriers and minimizes nonradiative recombination losses, while GUP can passivate the dangling Pb<sup>2+</sup> and I<sup>−</sup> vacancy defects in the perovskite, respectively. Furthermore, GUP helps slow down the perovskite crystallization, promotes pore filling, reduces residual stress in the device, and optimizes energy level alignment. Consequently, the power conversion efficiency of C-MPSCs with GUP increases to 19.78%, from 18.22% of the control devices. C-MPSCs with GUP exhibit excellent stability in air storage, thermal aging, and damp heat stability tests. The study provides a novel approach to eliminate nonradiative recombination losses at the buried interfaces of C-MPSCs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 38\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202507384\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202507384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳基介观钙钛矿太阳能电池(C-MPSCs)因其可打印制造和优异的稳定性而受到广泛关注。然而,埋藏界面处的非辐射复合损失阻碍了C-MPSCs效率的进一步提高。在本研究中,磷酸脲衍生物被用作C-MPSCs埋藏界面的改性剂。在介孔二氧化钛(m-TiO2)层中,磷酸光脲(GUP)可以与TiO2相互作用,锚定在m-TiO2表面,并在钙钛矿/m-TiO2界面形成分子桥。分子桥有利于电荷载流子的提取,使非辐射重组损失最小化,而GUP可以分别钝化钙钛矿中悬浮的Pb2+和I-空位缺陷。此外,GUP有助于减缓钙钛矿结晶,促进孔隙填充,减少器件中的残余应力,并优化能级排列。因此,具有GUP的C-MPSCs的功率转换效率从控制器件的18.22%提高到19.78%。具有GUP的C-MPSCs在空气储存,热老化和湿热稳定性测试中表现出优异的稳定性。该研究提供了一种新的方法来消除C-MPSCs埋藏界面的非辐射重组损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimizing Buried Interface Energy Losses via Urea Phosphate Derivatives Enable High-Efficiency Carbon-Based Mesoscopic Perovskite Solar Cells

Minimizing Buried Interface Energy Losses via Urea Phosphate Derivatives Enable High-Efficiency Carbon-Based Mesoscopic Perovskite Solar Cells

Carbon-based mesoscopic perovskite solar cells (C-MPSCs) have attracted widespread attention owing to the advantages of printable fabrication and excellent stability. However, the nonradiative recombination loss at buried interfaces hinders further efficiency improvements of C-MPSCs. In the study, urea phosphate derivative is utilized as a modifier for the buried interfaces of C-MPSCs. In the mesoporous titanium dioxide (m-TiO2) layer, guanylurea phosphate (GUP) can interact with TiO2, anchoring to the surface of m-TiO2 and forming a molecular bridge at the perovskite/m-TiO2 interface. The molecular bridge facilitates the extraction of charge carriers and minimizes nonradiative recombination losses, while GUP can passivate the dangling Pb2+ and I vacancy defects in the perovskite, respectively. Furthermore, GUP helps slow down the perovskite crystallization, promotes pore filling, reduces residual stress in the device, and optimizes energy level alignment. Consequently, the power conversion efficiency of C-MPSCs with GUP increases to 19.78%, from 18.22% of the control devices. C-MPSCs with GUP exhibit excellent stability in air storage, thermal aging, and damp heat stability tests. The study provides a novel approach to eliminate nonradiative recombination losses at the buried interfaces of C-MPSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信