{"title":"FGF受体通过酪氨酸磷酸化调节神经外胚层平面细胞极性","authors":"Ilya Chuykin, Sergei Y. Sokol","doi":"10.1038/s41467-025-62400-x","DOIUrl":null,"url":null,"abstract":"<p>FGF receptors play pivotal roles in morphogenetic processes, including vertebrate neurulation. Planar cell polarity signaling coordinates cell orientation in the tissue plane and is essential for neural tube closure. Here, we demonstrate abnormal planar polarity in the <i>Xenopus</i> neuroectoderm depleted of FGFR1, suggesting a mechanistic connection between FGFR signaling and morphogenesis. FGFR1 associates with the core planar cell polarity protein Vangl2, leading to its phosphorylation at N-terminal tyrosines, a modification also induced by FGF8. Vangl2 phosphorylation requires FGFR1 activity in <i>Xenopus</i> embryos and mouse embryonic stem cells, extending our observations to mammals. A non-phosphorylatable Vangl2 construct exhibits increased binding to the receptor tyrosine kinase PTK7, suggesting a potential role of Vangl2 phosphorylation. By contrast, a phosphomimetic Vangl2 mutant shows reduced interactions with Prickle and PTK7, and disrupted planar polarity in the neuroectoderm. Together, these findings identify cross-talk between the FGFR1 and planar cell polarity pathways mediated by Vangl2 tyrosine phosphorylation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FGF receptor modulates planar cell polarity in the neuroectoderm via Vangl2 tyrosine phosphorylation\",\"authors\":\"Ilya Chuykin, Sergei Y. Sokol\",\"doi\":\"10.1038/s41467-025-62400-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>FGF receptors play pivotal roles in morphogenetic processes, including vertebrate neurulation. Planar cell polarity signaling coordinates cell orientation in the tissue plane and is essential for neural tube closure. Here, we demonstrate abnormal planar polarity in the <i>Xenopus</i> neuroectoderm depleted of FGFR1, suggesting a mechanistic connection between FGFR signaling and morphogenesis. FGFR1 associates with the core planar cell polarity protein Vangl2, leading to its phosphorylation at N-terminal tyrosines, a modification also induced by FGF8. Vangl2 phosphorylation requires FGFR1 activity in <i>Xenopus</i> embryos and mouse embryonic stem cells, extending our observations to mammals. A non-phosphorylatable Vangl2 construct exhibits increased binding to the receptor tyrosine kinase PTK7, suggesting a potential role of Vangl2 phosphorylation. By contrast, a phosphomimetic Vangl2 mutant shows reduced interactions with Prickle and PTK7, and disrupted planar polarity in the neuroectoderm. Together, these findings identify cross-talk between the FGFR1 and planar cell polarity pathways mediated by Vangl2 tyrosine phosphorylation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62400-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62400-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
FGF receptor modulates planar cell polarity in the neuroectoderm via Vangl2 tyrosine phosphorylation
FGF receptors play pivotal roles in morphogenetic processes, including vertebrate neurulation. Planar cell polarity signaling coordinates cell orientation in the tissue plane and is essential for neural tube closure. Here, we demonstrate abnormal planar polarity in the Xenopus neuroectoderm depleted of FGFR1, suggesting a mechanistic connection between FGFR signaling and morphogenesis. FGFR1 associates with the core planar cell polarity protein Vangl2, leading to its phosphorylation at N-terminal tyrosines, a modification also induced by FGF8. Vangl2 phosphorylation requires FGFR1 activity in Xenopus embryos and mouse embryonic stem cells, extending our observations to mammals. A non-phosphorylatable Vangl2 construct exhibits increased binding to the receptor tyrosine kinase PTK7, suggesting a potential role of Vangl2 phosphorylation. By contrast, a phosphomimetic Vangl2 mutant shows reduced interactions with Prickle and PTK7, and disrupted planar polarity in the neuroectoderm. Together, these findings identify cross-talk between the FGFR1 and planar cell polarity pathways mediated by Vangl2 tyrosine phosphorylation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.