金属驱动的甲烷厌氧氧化和斯图亚特脱冰作用

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jun Hu, Sanzhong Li, Shui-Jiong Wang, Jörn Peckmann, Hongxiang Guan, Shao-yong Jiang, Wei Chen, Huan Cui, Zheng Qin, Peng Liu, Yanhui Suo, Zhaoxia Jiang, Dongyong Li, Nan Wang, Xiaohui Li, Yuan Zhong, Ruru Li, Xi-Ming Yang, Kurt O. Konhauser
{"title":"金属驱动的甲烷厌氧氧化和斯图亚特脱冰作用","authors":"Jun Hu, Sanzhong Li, Shui-Jiong Wang, Jörn Peckmann, Hongxiang Guan, Shao-yong Jiang, Wei Chen, Huan Cui, Zheng Qin, Peng Liu, Yanhui Suo, Zhaoxia Jiang, Dongyong Li, Nan Wang, Xiaohui Li, Yuan Zhong, Ruru Li, Xi-Ming Yang, Kurt O. Konhauser","doi":"10.1038/s41467-025-62622-z","DOIUrl":null,"url":null,"abstract":"<p>The Sturtian and Marinoan glaciations shaped Neoproterozoic palaeoenvironmental evolution. While methane emission likely intensified the Marinoan greenhouse effect, its role during the Sturtian glaciation—coinciding with widespread iron formations (IFs)—remains poorly understood. Here, we analysed bio-essential metals (Ni, Co, Zn), rare earth elements and yttrium (REY), Fe (δ<sup>56</sup>Fe) and Ni (δ<sup>60</sup>Ni) isotopes in hematite and magnetite, alongside bulk-rock and in-situ C isotopes of Mn-rich carbonates from five well-preserved Sturtian-aged IFs in South China. Our findings provide geochemical evidence for a methane-related biogeochemical pathway driving Fe-bearing mineral transformation via methanogenesis and metal-driven anaerobic methane oxidation (AOM), mediated by methanogens and anaerobic methane-oxidizing archaea (ANME) in ferruginous settings. Additionally, the Sturtian deglaciation facilitated atmospheric-oceanic O<sub>2</sub> exchange, increased nutrient influx from weathering, and methane release under slow AOM oxidation kinetics, potentially aiding ice sheet melting or prolonging glacial waning.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"69 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-driven anaerobic oxidation of methane and the Sturtian deglaciation\",\"authors\":\"Jun Hu, Sanzhong Li, Shui-Jiong Wang, Jörn Peckmann, Hongxiang Guan, Shao-yong Jiang, Wei Chen, Huan Cui, Zheng Qin, Peng Liu, Yanhui Suo, Zhaoxia Jiang, Dongyong Li, Nan Wang, Xiaohui Li, Yuan Zhong, Ruru Li, Xi-Ming Yang, Kurt O. Konhauser\",\"doi\":\"10.1038/s41467-025-62622-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Sturtian and Marinoan glaciations shaped Neoproterozoic palaeoenvironmental evolution. While methane emission likely intensified the Marinoan greenhouse effect, its role during the Sturtian glaciation—coinciding with widespread iron formations (IFs)—remains poorly understood. Here, we analysed bio-essential metals (Ni, Co, Zn), rare earth elements and yttrium (REY), Fe (δ<sup>56</sup>Fe) and Ni (δ<sup>60</sup>Ni) isotopes in hematite and magnetite, alongside bulk-rock and in-situ C isotopes of Mn-rich carbonates from five well-preserved Sturtian-aged IFs in South China. Our findings provide geochemical evidence for a methane-related biogeochemical pathway driving Fe-bearing mineral transformation via methanogenesis and metal-driven anaerobic methane oxidation (AOM), mediated by methanogens and anaerobic methane-oxidizing archaea (ANME) in ferruginous settings. Additionally, the Sturtian deglaciation facilitated atmospheric-oceanic O<sub>2</sub> exchange, increased nutrient influx from weathering, and methane release under slow AOM oxidation kinetics, potentially aiding ice sheet melting or prolonging glacial waning.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62622-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62622-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

斯图亚特冰期和马里诺冰期塑造了新元古代的古环境演化。虽然甲烷的排放可能加剧了马里诺温室效应,但它在斯图亚特冰川时期的作用——与广泛的铁形成(if)相吻合——仍然知之甚少。在此,我们分析了中国南方5个保存完好的图尔蒂亚期IFs中赤铁矿和磁铁矿中的生物必需金属(Ni、Co、Zn)、稀土元素和钇(REY)、Fe (δ56Fe)和Ni (δ60Ni)同位素,以及富锰碳酸盐的块状岩石和原位C同位素。我们的发现为含铁环境中甲烷相关的生物地球化学途径提供了地球化学证据,该途径通过甲烷菌和厌氧甲烷氧化古菌(ANME)介导的甲烷生成和金属驱动的厌氧甲烷氧化(AOM)驱动含铁矿物转化。此外,斯图亚特脱冰促进了大气-海洋的氧气交换,增加了风化引起的营养物质流入,以及缓慢AOM氧化动力学下的甲烷释放,可能有助于冰盖融化或延长冰川消退。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal-driven anaerobic oxidation of methane and the Sturtian deglaciation

Metal-driven anaerobic oxidation of methane and the Sturtian deglaciation

The Sturtian and Marinoan glaciations shaped Neoproterozoic palaeoenvironmental evolution. While methane emission likely intensified the Marinoan greenhouse effect, its role during the Sturtian glaciation—coinciding with widespread iron formations (IFs)—remains poorly understood. Here, we analysed bio-essential metals (Ni, Co, Zn), rare earth elements and yttrium (REY), Fe (δ56Fe) and Ni (δ60Ni) isotopes in hematite and magnetite, alongside bulk-rock and in-situ C isotopes of Mn-rich carbonates from five well-preserved Sturtian-aged IFs in South China. Our findings provide geochemical evidence for a methane-related biogeochemical pathway driving Fe-bearing mineral transformation via methanogenesis and metal-driven anaerobic methane oxidation (AOM), mediated by methanogens and anaerobic methane-oxidizing archaea (ANME) in ferruginous settings. Additionally, the Sturtian deglaciation facilitated atmospheric-oceanic O2 exchange, increased nutrient influx from weathering, and methane release under slow AOM oxidation kinetics, potentially aiding ice sheet melting or prolonging glacial waning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信