室温下的高纯度量子光力学

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lorenzo Dania, Oscar Schmitt Kremer, Johannes Piotrowski, Davide Candoli, Jayadev Vijayan, Oriol Romero-Isart, Carlos Gonzalez-Ballestero, Lukas Novotny, Martin Frimmer
{"title":"室温下的高纯度量子光力学","authors":"Lorenzo Dania, Oscar Schmitt Kremer, Johannes Piotrowski, Davide Candoli, Jayadev Vijayan, Oriol Romero-Isart, Carlos Gonzalez-Ballestero, Lukas Novotny, Martin Frimmer","doi":"10.1038/s41567-025-02976-9","DOIUrl":null,"url":null,"abstract":"<p>Exploiting quantum effects in a mechanical oscillator, such as back-action-evading measurements or squeezing of the mechanical degrees of freedom, requires the oscillator to be prepared in a high-purity quantum state. The largest state purities in optomechanics to date have been achieved with costly cryogenic cooling combined with coupling to electromagnetic resonators driven with a coherent radiation field. Here we use coherent scattering into a Fabry–Pérot cavity to cool the megahertz-frequency librational mode of an optically levitated silica nanoparticle from room temperature to its quantum ground state. We use sideband thermometry to infer a phonon population of 0.04 quanta under optimal conditions, corresponding to a state purity of 92%. The purity reached by our room-temperature experiment exceeds the performance offered by mechanically clamped oscillators in a cryogenic environment, establishing a platform for high-purity quantum optomechanics at room temperature.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"97 1","pages":""},"PeriodicalIF":18.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-purity quantum optomechanics at room temperature\",\"authors\":\"Lorenzo Dania, Oscar Schmitt Kremer, Johannes Piotrowski, Davide Candoli, Jayadev Vijayan, Oriol Romero-Isart, Carlos Gonzalez-Ballestero, Lukas Novotny, Martin Frimmer\",\"doi\":\"10.1038/s41567-025-02976-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exploiting quantum effects in a mechanical oscillator, such as back-action-evading measurements or squeezing of the mechanical degrees of freedom, requires the oscillator to be prepared in a high-purity quantum state. The largest state purities in optomechanics to date have been achieved with costly cryogenic cooling combined with coupling to electromagnetic resonators driven with a coherent radiation field. Here we use coherent scattering into a Fabry–Pérot cavity to cool the megahertz-frequency librational mode of an optically levitated silica nanoparticle from room temperature to its quantum ground state. We use sideband thermometry to infer a phonon population of 0.04 quanta under optimal conditions, corresponding to a state purity of 92%. The purity reached by our room-temperature experiment exceeds the performance offered by mechanically clamped oscillators in a cryogenic environment, establishing a platform for high-purity quantum optomechanics at room temperature.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":18.4000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02976-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02976-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用机械振荡器中的量子效应,如反作用力规避测量或机械自由度的压缩,需要在高纯度量子态下制备振荡器。迄今为止,光力学中最大的状态纯度已经通过昂贵的低温冷却结合耦合到由相干辐射场驱动的电磁谐振器来实现。在这里,我们使用相干散射进入法布里-帕姆罗特腔,将光学悬浮二氧化硅纳米粒子的兆赫频率振动模式从室温冷却到其量子基态。我们使用边带测温法推断出在最佳条件下声子居数为0.04量子,对应于92%的状态纯度。我们的室温实验达到的纯度超过了机械箝位振荡器在低温环境下的性能,为室温下的高纯度量子光力学建立了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-purity quantum optomechanics at room temperature

High-purity quantum optomechanics at room temperature

Exploiting quantum effects in a mechanical oscillator, such as back-action-evading measurements or squeezing of the mechanical degrees of freedom, requires the oscillator to be prepared in a high-purity quantum state. The largest state purities in optomechanics to date have been achieved with costly cryogenic cooling combined with coupling to electromagnetic resonators driven with a coherent radiation field. Here we use coherent scattering into a Fabry–Pérot cavity to cool the megahertz-frequency librational mode of an optically levitated silica nanoparticle from room temperature to its quantum ground state. We use sideband thermometry to infer a phonon population of 0.04 quanta under optimal conditions, corresponding to a state purity of 92%. The purity reached by our room-temperature experiment exceeds the performance offered by mechanically clamped oscillators in a cryogenic environment, establishing a platform for high-purity quantum optomechanics at room temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信