Kshitiz Parihar, Di-Ao Liu, Ghmkin Hassan, David A. Issadore, Paul A. Janmey, Valerie M. Weaver, Wei Guo, Ravi Radhakrishnan
{"title":"肿瘤进展过程中细胞外囊泡活性的机械调节","authors":"Kshitiz Parihar, Di-Ao Liu, Ghmkin Hassan, David A. Issadore, Paul A. Janmey, Valerie M. Weaver, Wei Guo, Ravi Radhakrishnan","doi":"10.1038/s41551-025-01446-0","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) are naturally occurring membrane-bound vesicles secreted by cells. Functionalized with surface-targeting molecules and carrying signalling proteins and nucleic acids as cargo, EVs can rewire pathways and alter biological processes in recipient cells. Tumour-derived EVs have key roles in cancer progression, particularly in metastasis, by promoting tumour cell invasion and the establishment of pre-metastatic niches. An evolving understanding of EVs in cancer highlights a complex intercellular communication network within and beyond the tumour microenvironment that involves cancer cells and non-cancerous cell types, such as fibroblasts and endothelial cells. More recently, EVs have also been recognized for their role in modulating interactions between host and immune cells and in reprogramming the tumour immune microenvironment. In this Review, we discuss EV biogenesis and function in diverse mechanobiological and mechanoimmunological contexts, highlighting how mechanical cues influence EV targeting and activity. The intricate interplay between mechanical forces and EV dynamics contributes to tumour progression and links EVs to key disease hallmarks. This Review discusses how mechanical cues can influence extracellular vesicle targeting and activity.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"9 8","pages":"1202-1221"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical regulation of extracellular vesicle activity during tumour progression\",\"authors\":\"Kshitiz Parihar, Di-Ao Liu, Ghmkin Hassan, David A. Issadore, Paul A. Janmey, Valerie M. Weaver, Wei Guo, Ravi Radhakrishnan\",\"doi\":\"10.1038/s41551-025-01446-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular vesicles (EVs) are naturally occurring membrane-bound vesicles secreted by cells. Functionalized with surface-targeting molecules and carrying signalling proteins and nucleic acids as cargo, EVs can rewire pathways and alter biological processes in recipient cells. Tumour-derived EVs have key roles in cancer progression, particularly in metastasis, by promoting tumour cell invasion and the establishment of pre-metastatic niches. An evolving understanding of EVs in cancer highlights a complex intercellular communication network within and beyond the tumour microenvironment that involves cancer cells and non-cancerous cell types, such as fibroblasts and endothelial cells. More recently, EVs have also been recognized for their role in modulating interactions between host and immune cells and in reprogramming the tumour immune microenvironment. In this Review, we discuss EV biogenesis and function in diverse mechanobiological and mechanoimmunological contexts, highlighting how mechanical cues influence EV targeting and activity. The intricate interplay between mechanical forces and EV dynamics contributes to tumour progression and links EVs to key disease hallmarks. This Review discusses how mechanical cues can influence extracellular vesicle targeting and activity.\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"9 8\",\"pages\":\"1202-1221\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41551-025-01446-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-025-01446-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mechanical regulation of extracellular vesicle activity during tumour progression
Extracellular vesicles (EVs) are naturally occurring membrane-bound vesicles secreted by cells. Functionalized with surface-targeting molecules and carrying signalling proteins and nucleic acids as cargo, EVs can rewire pathways and alter biological processes in recipient cells. Tumour-derived EVs have key roles in cancer progression, particularly in metastasis, by promoting tumour cell invasion and the establishment of pre-metastatic niches. An evolving understanding of EVs in cancer highlights a complex intercellular communication network within and beyond the tumour microenvironment that involves cancer cells and non-cancerous cell types, such as fibroblasts and endothelial cells. More recently, EVs have also been recognized for their role in modulating interactions between host and immune cells and in reprogramming the tumour immune microenvironment. In this Review, we discuss EV biogenesis and function in diverse mechanobiological and mechanoimmunological contexts, highlighting how mechanical cues influence EV targeting and activity. The intricate interplay between mechanical forces and EV dynamics contributes to tumour progression and links EVs to key disease hallmarks. This Review discusses how mechanical cues can influence extracellular vesicle targeting and activity.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.