Shengchun Zhang, Ran Yi, Linfeng An, Ji Liu, Xuebiao Yao, Shanshan Li, Kaiming Zhang
{"title":"对高阶天然rna多聚体的结构见解","authors":"Shengchun Zhang, Ran Yi, Linfeng An, Ji Liu, Xuebiao Yao, Shanshan Li, Kaiming Zhang","doi":"10.1038/s41594-025-01650-1","DOIUrl":null,"url":null,"abstract":"RNA-only complexes adopt intricate three-dimensional structures to fulfill diverse functions independently of protein partners. Although multimeric RNA-only structures have been engineered in synthetic RNA nanomaterials, naturally occurring RNA-only complexes have primarily been observed as monomers or dimers, leaving higher-order assemblies largely unexplored. ROOL (rumen-originating, ornate, large) and GOLLD (giant, ornate, lake- and Lactobacillales-derived) RNAs are conserved non-coding RNAs with complex secondary structures, but their high-resolution architectures remain unknown. Here, we determine the cryo-electron microscopy structures of UCC118-Rool RNA, Sag-Golld RNA and Env38-Golld RNA at 1.96–2.98 Å resolution, revealing their distinct hexameric, decameric and tetradecameric assemblies. These higher-order architectures are stabilized by an array of tertiary motifs such as kissing loops and tetraloop–receptor motifs, underscoring the conserved principles of RNA self-assembly. By elucidating the molecular details of these higher-order RNA-only assemblies, this study expands our understanding of RNA-based architectures and broadens the scope of RNA structural biology. The authors resolve high-resolution structures of complex multimeric RNA-only assemblies, redefining our understanding of non-coding RNA architecture and expanding the landscape of naturally evolved RNA nanostructures.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 10","pages":"2012-2021"},"PeriodicalIF":10.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural insights into higher-order natural RNA-only multimers\",\"authors\":\"Shengchun Zhang, Ran Yi, Linfeng An, Ji Liu, Xuebiao Yao, Shanshan Li, Kaiming Zhang\",\"doi\":\"10.1038/s41594-025-01650-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA-only complexes adopt intricate three-dimensional structures to fulfill diverse functions independently of protein partners. Although multimeric RNA-only structures have been engineered in synthetic RNA nanomaterials, naturally occurring RNA-only complexes have primarily been observed as monomers or dimers, leaving higher-order assemblies largely unexplored. ROOL (rumen-originating, ornate, large) and GOLLD (giant, ornate, lake- and Lactobacillales-derived) RNAs are conserved non-coding RNAs with complex secondary structures, but their high-resolution architectures remain unknown. Here, we determine the cryo-electron microscopy structures of UCC118-Rool RNA, Sag-Golld RNA and Env38-Golld RNA at 1.96–2.98 Å resolution, revealing their distinct hexameric, decameric and tetradecameric assemblies. These higher-order architectures are stabilized by an array of tertiary motifs such as kissing loops and tetraloop–receptor motifs, underscoring the conserved principles of RNA self-assembly. By elucidating the molecular details of these higher-order RNA-only assemblies, this study expands our understanding of RNA-based architectures and broadens the scope of RNA structural biology. The authors resolve high-resolution structures of complex multimeric RNA-only assemblies, redefining our understanding of non-coding RNA architecture and expanding the landscape of naturally evolved RNA nanostructures.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"32 10\",\"pages\":\"2012-2021\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-025-01650-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-025-01650-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural insights into higher-order natural RNA-only multimers
RNA-only complexes adopt intricate three-dimensional structures to fulfill diverse functions independently of protein partners. Although multimeric RNA-only structures have been engineered in synthetic RNA nanomaterials, naturally occurring RNA-only complexes have primarily been observed as monomers or dimers, leaving higher-order assemblies largely unexplored. ROOL (rumen-originating, ornate, large) and GOLLD (giant, ornate, lake- and Lactobacillales-derived) RNAs are conserved non-coding RNAs with complex secondary structures, but their high-resolution architectures remain unknown. Here, we determine the cryo-electron microscopy structures of UCC118-Rool RNA, Sag-Golld RNA and Env38-Golld RNA at 1.96–2.98 Å resolution, revealing their distinct hexameric, decameric and tetradecameric assemblies. These higher-order architectures are stabilized by an array of tertiary motifs such as kissing loops and tetraloop–receptor motifs, underscoring the conserved principles of RNA self-assembly. By elucidating the molecular details of these higher-order RNA-only assemblies, this study expands our understanding of RNA-based architectures and broadens the scope of RNA structural biology. The authors resolve high-resolution structures of complex multimeric RNA-only assemblies, redefining our understanding of non-coding RNA architecture and expanding the landscape of naturally evolved RNA nanostructures.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.