气候变化如何影响阶段结构的季节性繁殖者的动态。

IF 2.3 4区 数学 Q2 BIOLOGY
Yueyang Du, Frithjof Lutscher
{"title":"气候变化如何影响阶段结构的季节性繁殖者的动态。","authors":"Yueyang Du, Frithjof Lutscher","doi":"10.1007/s00285-025-02255-4","DOIUrl":null,"url":null,"abstract":"<p><p>In order to be useful in assessing the effects of climate change on biological populations, mathematical models have to adequately represent the life cycle of the species in question, the dynamics of and interactions with its resource(s), and the effect of changing environmental conditions on their vital rates. Due to this complexity, such models are often analytically intractable. We present here a consumer-resource model that captures seasonality (summer and winter), with synchronously reproducing consumers (birth pulse), structured into non-reproductive juveniles and reproductive adults, and that remains analytically tractable. Our model is motivated by hibernating mammals, such as marmots, ground squirrels, or bats, some of which live in high altitude regions where the effects of climate change are stronger than elsewhere. One stage-specific impact of climate change in those species is that juveniles may benefit from warmer winters while adults may suffer. We explore various aspects of how this differential response to climate change shapes population dynamics from stable populations to cycles and chaos. We show that the qualitative relationship between winter temperature and winter mortality has a significant effect on the model dynamics, hence informing empiricists of required data to assess the effect of climate change on these species. Our results question the long-standing expectation that species with slower life histories are necessarily more strongly affected by climate change than species with faster life histories.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 3","pages":"24"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How climate change can affect the dynamics of stage-structured seasonal breeders.\",\"authors\":\"Yueyang Du, Frithjof Lutscher\",\"doi\":\"10.1007/s00285-025-02255-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to be useful in assessing the effects of climate change on biological populations, mathematical models have to adequately represent the life cycle of the species in question, the dynamics of and interactions with its resource(s), and the effect of changing environmental conditions on their vital rates. Due to this complexity, such models are often analytically intractable. We present here a consumer-resource model that captures seasonality (summer and winter), with synchronously reproducing consumers (birth pulse), structured into non-reproductive juveniles and reproductive adults, and that remains analytically tractable. Our model is motivated by hibernating mammals, such as marmots, ground squirrels, or bats, some of which live in high altitude regions where the effects of climate change are stronger than elsewhere. One stage-specific impact of climate change in those species is that juveniles may benefit from warmer winters while adults may suffer. We explore various aspects of how this differential response to climate change shapes population dynamics from stable populations to cycles and chaos. We show that the qualitative relationship between winter temperature and winter mortality has a significant effect on the model dynamics, hence informing empiricists of required data to assess the effect of climate change on these species. Our results question the long-standing expectation that species with slower life histories are necessarily more strongly affected by climate change than species with faster life histories.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 3\",\"pages\":\"24\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02255-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02255-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地评估气候变化对生物种群的影响,数学模型必须充分地表示有关物种的生命周期、其资源的动态和相互作用,以及变化的环境条件对其生命速率的影响。由于这种复杂性,这种模型通常在分析上难以处理。我们在这里提出了一个消费者资源模型,该模型捕捉了季节性(夏季和冬季),与同步繁殖的消费者(出生脉冲),结构分为非生殖幼崽和生殖成年崽,并且在分析上仍然易于处理。我们的模型是由冬眠的哺乳动物驱动的,比如土拨鼠、地松鼠或蝙蝠,其中一些生活在气候变化影响比其他地方更强的高海拔地区。气候变化对这些物种的一个特定阶段的影响是,幼鱼可能从温暖的冬天中受益,而成年鱼可能会受苦。我们探索了这种对气候变化的差异反应如何从稳定的种群到周期和混乱的种群动态的各个方面。研究表明,冬季温度和冬季死亡率之间的定性关系对模型动力学有显著影响,从而为经验主义者提供了评估气候变化对这些物种影响所需的数据。我们的研究结果对长期以来的预期提出了质疑,即生命史较慢的物种必然比生命史较快的物种受气候变化的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How climate change can affect the dynamics of stage-structured seasonal breeders.

In order to be useful in assessing the effects of climate change on biological populations, mathematical models have to adequately represent the life cycle of the species in question, the dynamics of and interactions with its resource(s), and the effect of changing environmental conditions on their vital rates. Due to this complexity, such models are often analytically intractable. We present here a consumer-resource model that captures seasonality (summer and winter), with synchronously reproducing consumers (birth pulse), structured into non-reproductive juveniles and reproductive adults, and that remains analytically tractable. Our model is motivated by hibernating mammals, such as marmots, ground squirrels, or bats, some of which live in high altitude regions where the effects of climate change are stronger than elsewhere. One stage-specific impact of climate change in those species is that juveniles may benefit from warmer winters while adults may suffer. We explore various aspects of how this differential response to climate change shapes population dynamics from stable populations to cycles and chaos. We show that the qualitative relationship between winter temperature and winter mortality has a significant effect on the model dynamics, hence informing empiricists of required data to assess the effect of climate change on these species. Our results question the long-standing expectation that species with slower life histories are necessarily more strongly affected by climate change than species with faster life histories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信