{"title":"超越重组:探索减数分裂频率对全基因组遗传多样性的影响。","authors":"Louis Ollivier, Brian Charlesworth, Fanny Pouyet","doi":"10.1371/journal.pgen.1011798","DOIUrl":null,"url":null,"abstract":"<p><p>An important aim of population genetics is to elucidate the processes affecting genetic diversity across regions of the genome and across species. Canonical population genetic models of sexually reproducing species define the rate of meiotic recombination in terms of the frequency of recombination events per site per sexual generation. This paper studies the interplay of several factors with respect to their effects on neutral genetic diversity in a facultatively sexual, diploid, unicellular species such as yeast. The relevant factors are the prevalence of meiosis versus mitosis, the recombination rate, and the selection and dominance coefficients at loci under positive selection. We assume that many generations of mitotic cell divisions are interspersed with episodes of sexual reproduction, in which all individuals in the population undergo meiosis, followed by random matings among the resulting gametes. Our findings reveal that a single hard selective sweep can reduce neutral nucleotide site diversity across the entire genome, provided that the frequency of meiotic events is sufficiently low, and that the effects of a selective sweep on levels of neutral diversity at sites linked to the target of selection can be markedly different from those predicted by standard models of sweeps based on obligate sexuality. Species that reproduce by facultative sex are thus likely to exhibit unusual patterns of genetic diversity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 8","pages":"e1011798"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond recombination: Exploring the impact of meiotic frequency on genome-wide genetic diversity.\",\"authors\":\"Louis Ollivier, Brian Charlesworth, Fanny Pouyet\",\"doi\":\"10.1371/journal.pgen.1011798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important aim of population genetics is to elucidate the processes affecting genetic diversity across regions of the genome and across species. Canonical population genetic models of sexually reproducing species define the rate of meiotic recombination in terms of the frequency of recombination events per site per sexual generation. This paper studies the interplay of several factors with respect to their effects on neutral genetic diversity in a facultatively sexual, diploid, unicellular species such as yeast. The relevant factors are the prevalence of meiosis versus mitosis, the recombination rate, and the selection and dominance coefficients at loci under positive selection. We assume that many generations of mitotic cell divisions are interspersed with episodes of sexual reproduction, in which all individuals in the population undergo meiosis, followed by random matings among the resulting gametes. Our findings reveal that a single hard selective sweep can reduce neutral nucleotide site diversity across the entire genome, provided that the frequency of meiotic events is sufficiently low, and that the effects of a selective sweep on levels of neutral diversity at sites linked to the target of selection can be markedly different from those predicted by standard models of sweeps based on obligate sexuality. Species that reproduce by facultative sex are thus likely to exhibit unusual patterns of genetic diversity.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 8\",\"pages\":\"e1011798\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011798\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011798","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Beyond recombination: Exploring the impact of meiotic frequency on genome-wide genetic diversity.
An important aim of population genetics is to elucidate the processes affecting genetic diversity across regions of the genome and across species. Canonical population genetic models of sexually reproducing species define the rate of meiotic recombination in terms of the frequency of recombination events per site per sexual generation. This paper studies the interplay of several factors with respect to their effects on neutral genetic diversity in a facultatively sexual, diploid, unicellular species such as yeast. The relevant factors are the prevalence of meiosis versus mitosis, the recombination rate, and the selection and dominance coefficients at loci under positive selection. We assume that many generations of mitotic cell divisions are interspersed with episodes of sexual reproduction, in which all individuals in the population undergo meiosis, followed by random matings among the resulting gametes. Our findings reveal that a single hard selective sweep can reduce neutral nucleotide site diversity across the entire genome, provided that the frequency of meiotic events is sufficiently low, and that the effects of a selective sweep on levels of neutral diversity at sites linked to the target of selection can be markedly different from those predicted by standard models of sweeps based on obligate sexuality. Species that reproduce by facultative sex are thus likely to exhibit unusual patterns of genetic diversity.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.