绝经后骨质疏松和牙周炎rho信号转导基因的生物信息学分析。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jing Qi, E Liu, Yunqing Pang, Yu Wang, Jing Wang
{"title":"绝经后骨质疏松和牙周炎rho信号转导基因的生物信息学分析。","authors":"Jing Qi, E Liu, Yunqing Pang, Yu Wang, Jing Wang","doi":"10.1038/s41598-025-13872-w","DOIUrl":null,"url":null,"abstract":"<p><p>Postmenopausal osteoporosis (PMOP) increases the risk of periodontitis (PD), yet the shared mechanisms remain unclear. Rho-signal transduction genes may play a role due to their involvement in bone remodeling. This study aimed to explore Rho-related genes as potential biomarkers linking PMOP and PD. Public transcriptomic datasets of PMOP and PD were analyzed. After PCA-based outlier removal, differentially expressed genes were identified using limma, followed by intersection analysis, KEGG enrichment, PPI network construction, and Rho pathway screening. Machine learning (Lasso, SVM-RFE) and Wilcoxon tests identified CTNNAL1 and MERTK as candidate biomarkers. GSEA, ssGSEA, and immune infiltration analyses were performed, along with construction of lncRNA/circRNA-miRNA-mRNA regulatory networks. Subcellular localization, chromosomal mapping, disease association, and molecular docking analyses were also conducted. An ovariectomy plus periodontitis (OP+PD) mouse model was used for in vivo validation. CTNNAL1 and MERTK were consistently dysregulated in both PMOP and PD datasets. They were enriched in MYC-targets-V1, allograft rejection, heme metabolism, and oxidative phosphorylation. Immune analysis revealed altered levels of CD56^bright NK cells and immature dendritic cells. Regulatory networks implicated lncRNAs such as XIST, GAS5, and NEAT1. Molecular docking indicated interactions with pinosylvin and glycitein. In vivo validation confirmed significant changes in CTNNAL1 and MERTK expression and increased bone loss and inflammation in OP+PD mice. CTNNAL1 and MERTK were identified as potential Rho-associated biomarkers showing consistent dysregulation in both PMOP and PD datasets. These biomarkers may serve as risk indicators or therapeutic candidates, warranting further validation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28479"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322173/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioinformatics analysis of Rho-signal transduction genes in postmenopausal osteoporosis and periodontitis.\",\"authors\":\"Jing Qi, E Liu, Yunqing Pang, Yu Wang, Jing Wang\",\"doi\":\"10.1038/s41598-025-13872-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postmenopausal osteoporosis (PMOP) increases the risk of periodontitis (PD), yet the shared mechanisms remain unclear. Rho-signal transduction genes may play a role due to their involvement in bone remodeling. This study aimed to explore Rho-related genes as potential biomarkers linking PMOP and PD. Public transcriptomic datasets of PMOP and PD were analyzed. After PCA-based outlier removal, differentially expressed genes were identified using limma, followed by intersection analysis, KEGG enrichment, PPI network construction, and Rho pathway screening. Machine learning (Lasso, SVM-RFE) and Wilcoxon tests identified CTNNAL1 and MERTK as candidate biomarkers. GSEA, ssGSEA, and immune infiltration analyses were performed, along with construction of lncRNA/circRNA-miRNA-mRNA regulatory networks. Subcellular localization, chromosomal mapping, disease association, and molecular docking analyses were also conducted. An ovariectomy plus periodontitis (OP+PD) mouse model was used for in vivo validation. CTNNAL1 and MERTK were consistently dysregulated in both PMOP and PD datasets. They were enriched in MYC-targets-V1, allograft rejection, heme metabolism, and oxidative phosphorylation. Immune analysis revealed altered levels of CD56^bright NK cells and immature dendritic cells. Regulatory networks implicated lncRNAs such as XIST, GAS5, and NEAT1. Molecular docking indicated interactions with pinosylvin and glycitein. In vivo validation confirmed significant changes in CTNNAL1 and MERTK expression and increased bone loss and inflammation in OP+PD mice. CTNNAL1 and MERTK were identified as potential Rho-associated biomarkers showing consistent dysregulation in both PMOP and PD datasets. These biomarkers may serve as risk indicators or therapeutic candidates, warranting further validation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28479\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322173/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13872-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13872-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

绝经后骨质疏松症(PMOP)增加牙周炎(PD)的风险,但其共同机制尚不清楚。rho信号转导基因可能因其参与骨重塑而发挥作用。本研究旨在探索rho相关基因作为连接ppu和PD的潜在生物标志物。对公开的ppu和PD转录组数据集进行分析。在基于pca的异常值去除后,使用limma鉴定差异表达基因,然后进行交叉分析、KEGG富集、PPI网络构建和Rho通路筛选。机器学习(Lasso, SVM-RFE)和Wilcoxon测试确定CTNNAL1和MERTK作为候选生物标志物。进行GSEA、ssGSEA和免疫浸润分析,同时构建lncRNA/circRNA-miRNA-mRNA调控网络。亚细胞定位、染色体作图、疾病关联和分子对接分析也进行了。采用卵巢切除+牙周炎(OP+PD)小鼠模型进行体内验证。在ppu和PD数据集中,CTNNAL1和MERTK持续失调。它们富含myc -target - v1、同种异体移植排斥反应、血红素代谢和氧化磷酸化。免疫分析显示CD56^亮NK细胞和未成熟树突状细胞水平改变。调控网络涉及lncrna,如XIST、GAS5和NEAT1。分子对接表明与木质素蛋白和糖苷相互作用。体内验证证实,在OP+PD小鼠中,CTNNAL1和MERTK的表达发生了显著变化,骨质流失和炎症增加。CTNNAL1和MERTK被确定为潜在的rho相关生物标志物,在ppu和PD数据集中显示一致的失调。这些生物标志物可以作为风险指标或治疗候选物,需要进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinformatics analysis of Rho-signal transduction genes in postmenopausal osteoporosis and periodontitis.

Postmenopausal osteoporosis (PMOP) increases the risk of periodontitis (PD), yet the shared mechanisms remain unclear. Rho-signal transduction genes may play a role due to their involvement in bone remodeling. This study aimed to explore Rho-related genes as potential biomarkers linking PMOP and PD. Public transcriptomic datasets of PMOP and PD were analyzed. After PCA-based outlier removal, differentially expressed genes were identified using limma, followed by intersection analysis, KEGG enrichment, PPI network construction, and Rho pathway screening. Machine learning (Lasso, SVM-RFE) and Wilcoxon tests identified CTNNAL1 and MERTK as candidate biomarkers. GSEA, ssGSEA, and immune infiltration analyses were performed, along with construction of lncRNA/circRNA-miRNA-mRNA regulatory networks. Subcellular localization, chromosomal mapping, disease association, and molecular docking analyses were also conducted. An ovariectomy plus periodontitis (OP+PD) mouse model was used for in vivo validation. CTNNAL1 and MERTK were consistently dysregulated in both PMOP and PD datasets. They were enriched in MYC-targets-V1, allograft rejection, heme metabolism, and oxidative phosphorylation. Immune analysis revealed altered levels of CD56^bright NK cells and immature dendritic cells. Regulatory networks implicated lncRNAs such as XIST, GAS5, and NEAT1. Molecular docking indicated interactions with pinosylvin and glycitein. In vivo validation confirmed significant changes in CTNNAL1 and MERTK expression and increased bone loss and inflammation in OP+PD mice. CTNNAL1 and MERTK were identified as potential Rho-associated biomarkers showing consistent dysregulation in both PMOP and PD datasets. These biomarkers may serve as risk indicators or therapeutic candidates, warranting further validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信