磷酸肌酸通过NF-κB/PGC-1α通路调节线粒体功能和凋亡减轻阿霉素诱导的大鼠神经毒性。

IF 3.9 4区 医学 Q2 NEUROSCIENCES
Eskandar Qaed, Waleed Aldahmash, Mueataz A Mahyoub, Dalal Sanad Al-Mutairi, Zeyao Tang, Marwan Almoiliqy
{"title":"磷酸肌酸通过NF-κB/PGC-1α通路调节线粒体功能和凋亡减轻阿霉素诱导的大鼠神经毒性。","authors":"Eskandar Qaed, Waleed Aldahmash, Mueataz A Mahyoub, Dalal Sanad Al-Mutairi, Zeyao Tang, Marwan Almoiliqy","doi":"10.1007/s12017-025-08872-y","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is an effective chemotherapeutic agent, but its clinical utility is limited by its neurotoxic side effects. This study investigates the neuroprotective effects of phosphocreatine (PCr) against DOX-induced neurotoxicity in Sprague-Dawley rats. Forty rats were randomly assigned to four groups: control, DOX (2 mg/kg), DOX + PCr (20 mg/kg), and DOX + PCr (50 mg/kg). Parameters assessed included body weight, oxidative stress markers (MDA, SOD, GSH), and neurofunctional indicators (nNOS, BDNF). Mitochondrial respiration was evaluated using high-resolution respirometry, measuring state 3 and state 4 respiration, the respiratory control ratio (RCR), and ADP/O ratio. Western blotting was used to analyze apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-3, pro-caspase-3, pro-caspase-9, cytochrome c) and signaling molecules (NF-κB, PGC-1α). PCr treatment significantly reduced oxidative stress, as evidenced by lower MDA levels and elevated GSH and SOD. It also modulated apoptotic signaling by decreasing pro-apoptotic proteins (Bax, cleaved caspase-3) and increasing anti-apoptotic Bcl-2. Moreover, PCr enhanced mitochondrial function and biogenesis, while attenuating neuroinflammation through regulation of the NF-κB/PGC-1α pathway. These findings suggest that PCr protects against DOX-induced neurotoxicity by improving mitochondrial bioenergetics, reducing oxidative damage, and inhibiting neuronal apoptosis. PCr may represent a promising therapeutic strategy to mitigate chemotherapy-associated neurotoxicity.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"56"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphocreatine Mitigates Doxorubicin-Induced Neurotoxicity in Rats by Regulating Mitochondrial Function and Apoptosis via the NF-κB/PGC-1α Pathway.\",\"authors\":\"Eskandar Qaed, Waleed Aldahmash, Mueataz A Mahyoub, Dalal Sanad Al-Mutairi, Zeyao Tang, Marwan Almoiliqy\",\"doi\":\"10.1007/s12017-025-08872-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOX) is an effective chemotherapeutic agent, but its clinical utility is limited by its neurotoxic side effects. This study investigates the neuroprotective effects of phosphocreatine (PCr) against DOX-induced neurotoxicity in Sprague-Dawley rats. Forty rats were randomly assigned to four groups: control, DOX (2 mg/kg), DOX + PCr (20 mg/kg), and DOX + PCr (50 mg/kg). Parameters assessed included body weight, oxidative stress markers (MDA, SOD, GSH), and neurofunctional indicators (nNOS, BDNF). Mitochondrial respiration was evaluated using high-resolution respirometry, measuring state 3 and state 4 respiration, the respiratory control ratio (RCR), and ADP/O ratio. Western blotting was used to analyze apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-3, pro-caspase-3, pro-caspase-9, cytochrome c) and signaling molecules (NF-κB, PGC-1α). PCr treatment significantly reduced oxidative stress, as evidenced by lower MDA levels and elevated GSH and SOD. It also modulated apoptotic signaling by decreasing pro-apoptotic proteins (Bax, cleaved caspase-3) and increasing anti-apoptotic Bcl-2. Moreover, PCr enhanced mitochondrial function and biogenesis, while attenuating neuroinflammation through regulation of the NF-κB/PGC-1α pathway. These findings suggest that PCr protects against DOX-induced neurotoxicity by improving mitochondrial bioenergetics, reducing oxidative damage, and inhibiting neuronal apoptosis. PCr may represent a promising therapeutic strategy to mitigate chemotherapy-associated neurotoxicity.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"27 1\",\"pages\":\"56\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-025-08872-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08872-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿霉素(DOX)是一种有效的化疗药物,但其神经毒性副作用限制了其临床应用。本研究探讨磷酸肌酸(PCr)对dox诱导的Sprague-Dawley大鼠神经毒性的神经保护作用。将40只大鼠随机分为4组:对照组、DOX (2 mg/kg)、DOX + PCr (20 mg/kg)和DOX + PCr (50 mg/kg)。评估的参数包括体重、氧化应激标志物(MDA、SOD、GSH)和神经功能指标(nNOS、BDNF)。采用高分辨率呼吸仪评估线粒体呼吸,测量状态3和状态4呼吸、呼吸控制比(RCR)和ADP/O比。Western blotting检测凋亡相关蛋白(Bax、Bcl-2、cleaved caspase-3、pro-caspase-3、pro-caspase-9、细胞色素c)和信号分子(NF-κB、PGC-1α)。PCr处理显著降低了氧化应激,MDA水平降低,GSH和SOD水平升高。它还通过降低促凋亡蛋白(Bax, cleaved caspase-3)和增加抗凋亡蛋白Bcl-2来调节凋亡信号。此外,PCr可增强线粒体功能和生物发生,同时通过调节NF-κB/PGC-1α途径减轻神经炎症。这些发现表明,PCr通过改善线粒体生物能量,减少氧化损伤和抑制神经元凋亡来保护dox诱导的神经毒性。PCr可能是减轻化疗相关神经毒性的一种有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphocreatine Mitigates Doxorubicin-Induced Neurotoxicity in Rats by Regulating Mitochondrial Function and Apoptosis via the NF-κB/PGC-1α Pathway.

Doxorubicin (DOX) is an effective chemotherapeutic agent, but its clinical utility is limited by its neurotoxic side effects. This study investigates the neuroprotective effects of phosphocreatine (PCr) against DOX-induced neurotoxicity in Sprague-Dawley rats. Forty rats were randomly assigned to four groups: control, DOX (2 mg/kg), DOX + PCr (20 mg/kg), and DOX + PCr (50 mg/kg). Parameters assessed included body weight, oxidative stress markers (MDA, SOD, GSH), and neurofunctional indicators (nNOS, BDNF). Mitochondrial respiration was evaluated using high-resolution respirometry, measuring state 3 and state 4 respiration, the respiratory control ratio (RCR), and ADP/O ratio. Western blotting was used to analyze apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-3, pro-caspase-3, pro-caspase-9, cytochrome c) and signaling molecules (NF-κB, PGC-1α). PCr treatment significantly reduced oxidative stress, as evidenced by lower MDA levels and elevated GSH and SOD. It also modulated apoptotic signaling by decreasing pro-apoptotic proteins (Bax, cleaved caspase-3) and increasing anti-apoptotic Bcl-2. Moreover, PCr enhanced mitochondrial function and biogenesis, while attenuating neuroinflammation through regulation of the NF-κB/PGC-1α pathway. These findings suggest that PCr protects against DOX-induced neurotoxicity by improving mitochondrial bioenergetics, reducing oxidative damage, and inhibiting neuronal apoptosis. PCr may represent a promising therapeutic strategy to mitigate chemotherapy-associated neurotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信