{"title":"肠脑轴在调节无菌炎症对神经退行性疾病-阿尔茨海默病和帕金森病神经免疫反应的影响中的作用。","authors":"Pei-Zhi Ling, Ka-Hing Wong, Yuen-Shan Ho, Wai-Yin Cheng, Raymond Chuen-Chung Chang","doi":"10.1159/000547746","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Emerging evidence has demonstrated the important role of gut microbiota in host physiology, affecting host immunity. The gut-brain axis has been identified between the central nervous system and the gut microbiota, indicating bidirectional communication between the two systems.</p><p><strong>Summary: </strong>Microbial imbalance (in other words, gut dysbiosis) can lead to chronic systemic inflammation, resulting in neuroinflammation as an example of sterile inflammation. Three major pathways in causing neuroinflammation from chronic systemic inflammation by the gut microbiota via the gut-brain axis are discussed throughout the article. This includes the inflammasome signaling, altered permeability of the blood-brain barrier by the short-chain fatty acids (SCFAs), and oxidative stress.</p><p><strong>Key messages: </strong>Through understanding that gut dysbiosis is capable of modulating neuroinflammation, the use of probiotics in neurodegenerative diseases can be investigated to assess their therapeutic potential. Increasing clinical studies show positive results on the use of probiotics in neurodegenerative diseases, yet further evidence is required to validate their clinical effectiveness.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"1-22"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Gut-Brain Axis in Modulating the Impact of Sterile Inflammation on Neuroimmune Responses in Neurodegenerative Diseases - Alzheimer's Disease and Parkinson's Disease.\",\"authors\":\"Pei-Zhi Ling, Ka-Hing Wong, Yuen-Shan Ho, Wai-Yin Cheng, Raymond Chuen-Chung Chang\",\"doi\":\"10.1159/000547746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Emerging evidence has demonstrated the important role of gut microbiota in host physiology, affecting host immunity. The gut-brain axis has been identified between the central nervous system and the gut microbiota, indicating bidirectional communication between the two systems.</p><p><strong>Summary: </strong>Microbial imbalance (in other words, gut dysbiosis) can lead to chronic systemic inflammation, resulting in neuroinflammation as an example of sterile inflammation. Three major pathways in causing neuroinflammation from chronic systemic inflammation by the gut microbiota via the gut-brain axis are discussed throughout the article. This includes the inflammasome signaling, altered permeability of the blood-brain barrier by the short-chain fatty acids (SCFAs), and oxidative stress.</p><p><strong>Key messages: </strong>Through understanding that gut dysbiosis is capable of modulating neuroinflammation, the use of probiotics in neurodegenerative diseases can be investigated to assess their therapeutic potential. Increasing clinical studies show positive results on the use of probiotics in neurodegenerative diseases, yet further evidence is required to validate their clinical effectiveness.</p>\",\"PeriodicalId\":19133,\"journal\":{\"name\":\"Neuroimmunomodulation\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimmunomodulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000547746\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000547746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The Role of Gut-Brain Axis in Modulating the Impact of Sterile Inflammation on Neuroimmune Responses in Neurodegenerative Diseases - Alzheimer's Disease and Parkinson's Disease.
Background: Emerging evidence has demonstrated the important role of gut microbiota in host physiology, affecting host immunity. The gut-brain axis has been identified between the central nervous system and the gut microbiota, indicating bidirectional communication between the two systems.
Summary: Microbial imbalance (in other words, gut dysbiosis) can lead to chronic systemic inflammation, resulting in neuroinflammation as an example of sterile inflammation. Three major pathways in causing neuroinflammation from chronic systemic inflammation by the gut microbiota via the gut-brain axis are discussed throughout the article. This includes the inflammasome signaling, altered permeability of the blood-brain barrier by the short-chain fatty acids (SCFAs), and oxidative stress.
Key messages: Through understanding that gut dysbiosis is capable of modulating neuroinflammation, the use of probiotics in neurodegenerative diseases can be investigated to assess their therapeutic potential. Increasing clinical studies show positive results on the use of probiotics in neurodegenerative diseases, yet further evidence is required to validate their clinical effectiveness.
期刊介绍:
The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.